論文の概要: Adversarial Agents: Black-Box Evasion Attacks with Reinforcement Learning
- arxiv url: http://arxiv.org/abs/2503.01734v1
- Date: Mon, 03 Mar 2025 16:54:03 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-05 19:20:56.547668
- Title: Adversarial Agents: Black-Box Evasion Attacks with Reinforcement Learning
- Title(参考訳): 敵エージェント:強化学習によるブラックボックス侵入攻撃
- Authors: Kyle Domico, Jean-Charles Noirot Ferrand, Ryan Sheatsley, Eric Pauley, Josiah Hanna, Patrick McDaniel,
- Abstract要約: 強化学習(RL)は、複雑なシーケンシャルな意思決定タスクを経験から解くための強力な技術を提供する。
本稿では,対戦型機械学習(AML)にRLを適用して,対戦型機械学習を学習する新たな攻撃方法を提案する。
セキュリティの観点から、この研究はRLを使用してMLモデルを効率的かつ大規模に攻撃する強力な新たな攻撃ベクトルを示す。
- 参考スコア(独自算出の注目度): 5.324888516045196
- License:
- Abstract: Reinforcement learning (RL) offers powerful techniques for solving complex sequential decision-making tasks from experience. In this paper, we demonstrate how RL can be applied to adversarial machine learning (AML) to develop a new class of attacks that learn to generate adversarial examples: inputs designed to fool machine learning models. Unlike traditional AML methods that craft adversarial examples independently, our RL-based approach retains and exploits past attack experience to improve future attacks. We formulate adversarial example generation as a Markov Decision Process and evaluate RL's ability to (a) learn effective and efficient attack strategies and (b) compete with state-of-the-art AML. On CIFAR-10, our agent increases the success rate of adversarial examples by 19.4% and decreases the median number of victim model queries per adversarial example by 53.2% from the start to the end of training. In a head-to-head comparison with a state-of-the-art image attack, SquareAttack, our approach enables an adversary to generate adversarial examples with 13.1% more success after 5000 episodes of training. From a security perspective, this work demonstrates a powerful new attack vector that uses RL to attack ML models efficiently and at scale.
- Abstract(参考訳): 強化学習(RL)は、複雑なシーケンシャルな意思決定タスクを経験から解くための強力な技術を提供する。
本稿では、RLを機械学習(AML)に適用して、機械学習モデルを騙すために設計された入力を学習する新たなタイプの攻撃を開発する方法を示す。
我々のRLベースのアプローチは、敵のサンプルを独立して作成する従来のAMLメソッドとは異なり、過去の攻撃経験を保ち、将来の攻撃を改善するために利用します。
我々は、マルコフ決定過程として逆例生成を定式化し、RLの能力を評価する。
a) 効果的で効果的な攻撃戦略を学習し
(b)最先端のAMLと競合する。
CIFAR-10では, 敵例の成功率を19.4%増加させ, 敵例あたりの犠牲者モデルクエリの中央値をトレーニング開始から終了まで53.2%減少させる。
最先端のイメージアタックであるSquareAttackと正面対決で、我々のアプローチは、5000回のトレーニングの後、敵が13.1%成功して敵の例を生成することを可能にする。
セキュリティの観点から、この研究はRLを使用してMLモデルを効率的かつ大規模に攻撃する強力な新たな攻撃ベクトルを示す。
関連論文リスト
- GenFighter: A Generative and Evolutive Textual Attack Removal [6.044610337297754]
自然言語処理(NLP)におけるTransformerモデルのような、ディープニューラルネットワーク(DNN)に対するアドリラルアタックは大きな課題となる。
本稿では,訓練分類分布の学習と推論によって敵の堅牢性を高める新しい防衛戦略であるGenFighterを紹介する。
我々は、GenFighterが攻撃および攻撃成功率の指標の下で、最先端の防御能力より優れていることを示す。
論文 参考訳(メタデータ) (2024-04-17T16:32:13Z) - BadRL: Sparse Targeted Backdoor Attack Against Reinforcement Learning [37.19070609394519]
強化学習(RL)におけるバックドア攻撃は、これまで攻撃の成功を確実にするために激しい攻撃戦略を採用してきた。
本研究は, トレーニングおよび試験において, 背部毒を多量に投与することに焦点を当てた新しいアプローチであるBadRLを提案する。
私たちのアルゴリズムであるBadRLは、高い攻撃値を持つ状態観測を戦略的に選択し、トレーニングやテスト中にトリガーを注入し、検出の機会を減らす。
論文 参考訳(メタデータ) (2023-12-19T20:29:29Z) - DALA: A Distribution-Aware LoRA-Based Adversarial Attack against
Language Models [64.79319733514266]
敵攻撃は入力データに微妙な摂動をもたらす可能性がある。
最近の攻撃方法は比較的高い攻撃成功率(ASR)を達成することができる。
そこで本研究では,分散ロラをベースとしたDALA(Adversarial Attack)手法を提案する。
論文 参考訳(メタデータ) (2023-11-14T23:43:47Z) - Enhancing the Robustness of QMIX against State-adversarial Attacks [6.627954554805906]
本稿では,SARLアルゴリズムの堅牢性を向上し,それらをマルチエージェントシナリオに拡張する4つの手法について論じる。
我々は、この研究で様々な攻撃を用いてモデルを訓練する。
次に、トレーニングフェーズ全体を通して、対応する攻撃に適応して、他の攻撃を用いて教えられたモデルをテストする。
論文 参考訳(メタデータ) (2023-07-03T10:10:34Z) - Sampling Attacks on Meta Reinforcement Learning: A Minimax Formulation
and Complexity Analysis [20.11993437283895]
本稿では,この種のセキュリティリスクを理解するためのゲーム理論的基盤を提供する。
我々は、サンプリング攻撃モデルを、攻撃者とエージェントの間のスタックルバーグゲームとして定義し、最小限の定式化をもたらす。
我々は,攻撃者の小さな努力が学習性能を著しく低下させる可能性があることを観察した。
論文 参考訳(メタデータ) (2022-07-29T21:29:29Z) - Projective Ranking-based GNN Evasion Attacks [52.85890533994233]
グラフニューラルネットワーク(GNN)は、グラフ関連のタスクに対して、有望な学習方法を提供する。
GNNは敵の攻撃の危険にさらされている。
論文 参考訳(メタデータ) (2022-02-25T21:52:09Z) - Adversarial Robustness of Deep Reinforcement Learning based Dynamic
Recommender Systems [50.758281304737444]
本稿では,強化学習に基づく対話型レコメンデーションシステムにおける敵例の探索と攻撃検出を提案する。
まず、入力に摂動を加え、カジュアルな要因に介入することで、異なる種類の逆例を作成する。
そこで,本研究では,人工データに基づく深層学習に基づく分類器による潜在的攻撃を検出することにより,推薦システムを強化した。
論文 参考訳(メタデータ) (2021-12-02T04:12:24Z) - Model-Agnostic Meta-Attack: Towards Reliable Evaluation of Adversarial
Robustness [53.094682754683255]
モデル非依存型メタアタック(MAMA)アプローチにより,より強力な攻撃アルゴリズムを自動検出する。
本手法は、繰り返しニューラルネットワークによってパラメータ化された逆攻撃を学習する。
本研究では,未知の防御を攻撃した場合の学習能力を向上させるために,モデルに依存しない訓練アルゴリズムを開発した。
論文 参考訳(メタデータ) (2021-10-13T13:54:24Z) - ML-Doctor: Holistic Risk Assessment of Inference Attacks Against Machine
Learning Models [64.03398193325572]
機械学習(ML)モデルに対する推論攻撃により、敵はトレーニングデータやモデルパラメータなどを学ぶことができる。
私たちは、メンバシップ推論、モデル反転、属性推論、モデル盗難の4つの攻撃に集中しています。
私たちの分析では、MLモデルオーナがモデルをデプロイするリスクを評価することができる、モジュール化された再使用可能なソフトウェアであるML-Doctorに依存しています。
論文 参考訳(メタデータ) (2021-02-04T11:35:13Z) - Robust Reinforcement Learning on State Observations with Learned Optimal
Adversary [86.0846119254031]
逆摂動状態観測による強化学習の堅牢性について検討した。
固定されたエージェントポリシーでは、摂動状態の観測に最適な敵を見つけることができる。
DRLの設定では、これは以前のものよりもはるかに強い学習された敵対を介してRLエージェントに新しい経験的敵対攻撃につながります。
論文 参考訳(メタデータ) (2021-01-21T05:38:52Z) - Stealthy and Efficient Adversarial Attacks against Deep Reinforcement
Learning [30.46580767540506]
本稿では,Deep Reinforcement Learning Agentを効果的かつ効果的に攻撃するための2つの新しい敵攻撃手法を紹介する。
敵は将来の環境状態とエージェントの行動を予測するモデルを構築し、それぞれの攻撃戦略の損傷を評価し、最適な攻撃方法を選択する。
敵は自動的にドメインに依存しないモデルを学び、エピソード中のエージェントを攻撃する重要な瞬間を発見する。
論文 参考訳(メタデータ) (2020-05-14T16:06:38Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。