CoLLM: Integrating Collaborative Embeddings into Large Language Models for Recommendation
- URL: http://arxiv.org/abs/2310.19488v2
- Date: Thu, 24 Oct 2024 08:53:22 GMT
- Title: CoLLM: Integrating Collaborative Embeddings into Large Language Models for Recommendation
- Authors: Yang Zhang, Fuli Feng, Jizhi Zhang, Keqin Bao, Qifan Wang, Xiangnan He,
- Abstract summary: We introduce CoLLM, an innovative LLMRec methodology that seamlessly incorporates collaborative information into LLMs for recommendation.
CoLLM captures collaborative information through an external traditional model and maps it to the input token embedding space of LLM.
Extensive experiments validate that CoLLM adeptly integrates collaborative information into LLMs, resulting in enhanced recommendation performance.
- Score: 60.2700801392527
- License:
- Abstract: Leveraging Large Language Models as Recommenders (LLMRec) has gained significant attention and introduced fresh perspectives in user preference modeling. Existing LLMRec approaches prioritize text semantics, usually neglecting the valuable collaborative information from user-item interactions in recommendations. While these text-emphasizing approaches excel in cold-start scenarios, they may yield sub-optimal performance in warm-start situations. In pursuit of superior recommendations for both cold and warm start scenarios, we introduce CoLLM, an innovative LLMRec methodology that seamlessly incorporates collaborative information into LLMs for recommendation. CoLLM captures collaborative information through an external traditional model and maps it to the input token embedding space of LLM, forming collaborative embeddings for LLM usage. Through this external integration of collaborative information, CoLLM ensures effective modeling of collaborative information without modifying the LLM itself, providing the flexibility to employ various collaborative information modeling techniques. Extensive experiments validate that CoLLM adeptly integrates collaborative information into LLMs, resulting in enhanced recommendation performance. We release the code and data at https://github.com/zyang1580/CoLLM.
Related papers
- Towards a Unified Paradigm: Integrating Recommendation Systems as a New Language in Large Models [33.02146794292383]
We introduce a new concept, "Integrating Recommendation Systems as a New Language in Large Models" (RSLLM)
RSLLM uses a unique prompting method that combines ID-based item embeddings from conventional recommendation models with textual item features.
It treats users' sequential behaviors as a distinct language and aligns the ID embeddings with the LLM's input space using a projector.
arXiv Detail & Related papers (2024-12-22T09:08:46Z) - Real-Time Personalization for LLM-based Recommendation with Customized In-Context Learning [57.28766250993726]
This work explores adapting to dynamic user interests without any model updates.
Existing Large Language Model (LLM)-based recommenders often lose the in-context learning ability during recommendation tuning.
We propose RecICL, which customizes recommendation-specific in-context learning for real-time recommendations.
arXiv Detail & Related papers (2024-10-30T15:48:36Z) - CoRA: Collaborative Information Perception by Large Language Model's Weights for Recommendation [13.867950651601483]
Involving collaborative information in Large Language Models (LLMs) is a promising technique for adapting LLMs for recommendation.
Existing methods achieve this by concatenating collaborative features with text tokens into a unified sequence input.
We propose a new paradigm, textbfCollaborative textbfLoRA, with a collaborative query generator.
arXiv Detail & Related papers (2024-08-20T08:36:59Z) - DaRec: A Disentangled Alignment Framework for Large Language Model and Recommender System [83.34921966305804]
Large language models (LLMs) have demonstrated remarkable performance in recommender systems.
We propose a novel plug-and-play alignment framework for LLMs and collaborative models.
Our method is superior to existing state-of-the-art algorithms.
arXiv Detail & Related papers (2024-08-15T15:56:23Z) - Beyond Inter-Item Relations: Dynamic Adaption for Enhancing LLM-Based Sequential Recommendation [83.87767101732351]
Sequential recommender systems (SRS) predict the next items that users may prefer based on user historical interaction sequences.
Inspired by the rise of large language models (LLMs) in various AI applications, there is a surge of work on LLM-based SRS.
We propose DARec, a sequential recommendation model built on top of coarse-grained adaption for capturing inter-item relations.
arXiv Detail & Related papers (2024-08-14T10:03:40Z) - Text-like Encoding of Collaborative Information in Large Language Models for Recommendation [58.87865271693269]
We introduce BinLLM, a novel method to seamlessly integrate collaborative information with Large Language Models for Recommendation (LLMRec)
BinLLM converts collaborative embeddings from external models into binary sequences.
BinLLM provides options to compress the binary sequence using dot-decimal notation to avoid excessively long lengths.
arXiv Detail & Related papers (2024-06-05T12:45:25Z) - A Practice-Friendly LLM-Enhanced Paradigm with Preference Parsing for Sequential Recommendation [15.153844486572932]
This paper proposes a practice-friendly LLM-enhanced paradigm with preference parsing (P2Rec) for sequential recommender systems (SRS)
Specifically, in the information reconstruction stage, we design a new user-level SFT task for collaborative information injection with the assistance of a pre-trained SRS model.
Our goal is to let LLM learn to reconstruct a corresponding prior preference distribution from each user's interaction sequence.
arXiv Detail & Related papers (2024-06-01T07:18:56Z) - Large Language Models meet Collaborative Filtering: An Efficient All-round LLM-based Recommender System [19.8986219047121]
Collaborative filtering recommender systems (CF-RecSys) have shown successive results in enhancing the user experience on social media and e-commerce platforms.
Recent strategies have focused on leveraging modality information of user/items based on pre-trained modality encoders and Large Language Models.
We propose an efficient All-round LLM-based Recommender system, called A-LLMRec, that excels not only in the cold scenario but also in the warm scenario.
arXiv Detail & Related papers (2024-04-17T13:03:07Z) - Recommender AI Agent: Integrating Large Language Models for Interactive
Recommendations [53.76682562935373]
We introduce an efficient framework called textbfInteRecAgent, which employs LLMs as the brain and recommender models as tools.
InteRecAgent achieves satisfying performance as a conversational recommender system, outperforming general-purpose LLMs.
arXiv Detail & Related papers (2023-08-31T07:36:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.