Denoising Functional Maps: Diffusion Models for Shape Correspondence
- URL: http://arxiv.org/abs/2503.01845v2
- Date: Wed, 02 Apr 2025 14:01:32 GMT
- Title: Denoising Functional Maps: Diffusion Models for Shape Correspondence
- Authors: Aleksei Zhuravlev, Zorah Lähner, Vladislav Golyanik,
- Abstract summary: We propose a fundamentally new approach to shape correspondence based on denoising diffusion models.<n>We use a large dataset of synthetic human meshes for training and employ two steps to reduce the number of functional maps that need to be learned.<n>Our model achieves competitive performance on standard human datasets, meshes with anisotropic connectivity, non-isometric humanoid shapes, as well as animals.
- Score: 25.50153593846352
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Estimating correspondences between pairs of deformable shapes remains a challenging problem. Despite substantial progress, existing methods lack broad generalization capabilities and require category-specific training data. To address these limitations, we propose a fundamentally new approach to shape correspondence based on denoising diffusion models. In our method, a diffusion model learns to directly predict the functional map, a low-dimensional representation of a point-wise map between shapes. We use a large dataset of synthetic human meshes for training and employ two steps to reduce the number of functional maps that need to be learned. First, the maps refer to a template rather than shape pairs. Second, the functional map is defined in a basis of eigenvectors of the Laplacian, which is not unique due to sign ambiguity. Therefore, we introduce an unsupervised approach to select a specific basis by correcting the signs of eigenvectors based on surface features. Our model achieves competitive performance on standard human datasets, meshes with anisotropic connectivity, non-isometric humanoid shapes, as well as animals compared to existing descriptor-based and large-scale shape deformation methods. See our project page for the source code and the datasets.
Related papers
- Spectral Meets Spatial: Harmonising 3D Shape Matching and Interpolation [50.376243444909136]
We present a unified framework to predict both point-wise correspondences and shape between 3D shapes.
We combine the deep functional map framework with classical surface deformation models to map shapes in both spectral and spatial domains.
arXiv Detail & Related papers (2024-02-29T07:26:23Z) - Neural Semantic Surface Maps [52.61017226479506]
We present an automated technique for computing a map between two genus-zero shapes, which matches semantically corresponding regions to one another.
Our approach can generate semantic surface-to-surface maps, eliminating manual annotations or any 3D training data requirement.
arXiv Detail & Related papers (2023-09-09T16:21:56Z) - Zero-Shot 3D Shape Correspondence [67.18775201037732]
We propose a novel zero-shot approach to computing correspondences between 3D shapes.
We exploit the exceptional reasoning capabilities of recent foundation models in language and vision.
Our approach produces highly plausible results in a zero-shot manner, especially between strongly non-isometric shapes.
arXiv Detail & Related papers (2023-06-05T21:14:23Z) - G-MSM: Unsupervised Multi-Shape Matching with Graph-based Affinity
Priors [52.646396621449]
G-MSM is a novel unsupervised learning approach for non-rigid shape correspondence.
We construct an affinity graph on a given set of training shapes in a self-supervised manner.
We demonstrate state-of-the-art performance on several recent shape correspondence benchmarks.
arXiv Detail & Related papers (2022-12-06T12:09:24Z) - Landmark-free Statistical Shape Modeling via Neural Flow Deformations [0.5897108307012394]
We present FlowSSM, a novel shape modeling approach that learns shape variability without requiring dense correspondence between training instances.
Our model outperforms state-of-the-art methods in providing an expressive and robust shape prior for distal femur and liver.
arXiv Detail & Related papers (2022-09-14T18:17:19Z) - Linear Connectivity Reveals Generalization Strategies [54.947772002394736]
Some pairs of finetuned models have large barriers of increasing loss on the linear paths between them.
We find distinct clusters of models which are linearly connected on the test loss surface, but are disconnected from models outside the cluster.
Our work demonstrates how the geometry of the loss surface can guide models towards different functions.
arXiv Detail & Related papers (2022-05-24T23:43:02Z) - DPFM: Deep Partial Functional Maps [28.045544079256686]
We consider the problem of computing dense correspondences between non-rigid shapes with potentially significant partiality.
We propose the first learning method aimed directly at partial non-rigid shape correspondence.
Our approach uses the functional map framework, can be trained in a supervised or unsupervised manner, and learns descriptors directly from the data.
arXiv Detail & Related papers (2021-10-19T14:05:37Z) - Functional additive regression on shape and form manifolds of planar
curves [0.0]
We define shape and form as equivalence classes under translation, rotation and -- for shapes -- also scale.
We extend generalized additive regression to models for the shape/form of planar curves or landmark.
arXiv Detail & Related papers (2021-09-06T17:43:32Z) - NeuroMorph: Unsupervised Shape Interpolation and Correspondence in One
Go [109.88509362837475]
We present NeuroMorph, a new neural network architecture that takes as input two 3D shapes.
NeuroMorph produces smooth and point-to-point correspondences between them.
It works well for a large variety of input shapes, including non-isometric pairs from different object categories.
arXiv Detail & Related papers (2021-06-17T12:25:44Z) - Deep Geometric Functional Maps: Robust Feature Learning for Shape
Correspondence [31.840880075039944]
We present a novel learning-based approach for computing correspondences between non-rigid 3D shapes.
Key to our method is a feature-extraction network that learns directly from raw shape geometry.
arXiv Detail & Related papers (2020-03-31T15:20:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.