Surface Morphology Assisted Trapping of Strongly Coupled Electron-on-Neon Charge States
- URL: http://arxiv.org/abs/2503.01847v1
- Date: Mon, 03 Mar 2025 18:59:59 GMT
- Title: Surface Morphology Assisted Trapping of Strongly Coupled Electron-on-Neon Charge States
- Authors: Kaiwen Zheng, Xingrui Song, Kater W. Murch,
- Abstract summary: Single electrons confined to a free neon surface and manipulated through the circuit quantum electrodynamics (circuit QED) architecture is a promising novel quantum computing platform.<n>We investigate how resonator trench depth and substrate surface properties influence the formation of eNe charge states and their coupling to microwave resonators.
- Score: 0.6827423171182154
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Single electrons confined to a free neon surface and manipulated through the circuit quantum electrodynamics (circuit QED) architecture is a promising novel quantum computing platform. Understanding the exact physical nature of the electron-on-neon (eNe) charge states is important for realizing this platform's potential for quantum technologies. We investigate how resonator trench depth and substrate surface properties influence the formation of eNe charge states and their coupling to microwave resonators. Through experimental observation supported by modeling, we find that shallow-depth etching of the resonator features maximizes coupling strength. By comparing the trapping statistics and surface morphology of devices with altered trench roughness, our work reveals the role of fabrication-induced surface features in the formation of strongly coupled eNe states.
Related papers
- Electron-Electron Interactions in Device Simulation via Non-equilibrium Green's Functions and the GW Approximation [71.63026504030766]
electron-electron (e-e) interactions must be explicitly incorporated in quantum transport simulation.
This study is the first one reporting large-scale atomistic quantum transport simulations of nano-devices under non-equilibrium conditions.
arXiv Detail & Related papers (2024-12-17T15:05:33Z) - Tailoring coherent charge transport in graphene by deterministic defect generation [36.136619420474766]
We introduce lattice defects in graphene that enable phase-matched charge carrier waves.<n>Multiple electronic Fabry-Perot cavities are formed by creating periodically alternating defective and pristine nano-stripes.<n>Defective stripes behave as partially reflecting mirrors and resonantly confine the charge carrier waves within the pristine areas, giving rise to Fabry-Perot resonant modes.<n>These coherent phenomena survive up to 30 K for both polarities of charge carriers, contrarily to traditional monopolar electrostatically created Fabry-Perot interferometers.
arXiv Detail & Related papers (2024-09-07T15:37:23Z) - Quench dynamics in higher-dimensional Holstein models: Insights from Truncated Wigner Approaches [41.94295877935867]
We study the melting of charge-density waves in a Holstein model after a sudden switch-on of the electronic hopping.
A comparison with exact data obtained for a Holstein chain shows that a semiclassical treatment of both the electrons and phonons is required in order to correctly describe the phononic dynamics.
arXiv Detail & Related papers (2023-12-19T16:14:01Z) - Single-electron qubits based on quantum ring states on solid neon surface [4.3049739550615875]
Single electrons trapped on solid neon surfaces (eNe) have recently emerged as a promising platform for charge qubits.
We show that surface bumps can naturally bind an electron, forming unique quantum ring states.
We also show that the electron's excitation energy can be tuned using a modest magnetic field to facilitate qubit operation.
arXiv Detail & Related papers (2023-11-04T20:36:34Z) - Coulomb interaction-driven entanglement of electrons on helium [0.0]
We theoretically investigate the generation of emphmotional entanglement between two electrons via their unscreened Coulomb interaction.
We compute the motional energy spectra of the electrons, as well as their entanglement, by diagonalizing the model Hamiltonian with respect to a single-particle Hartree product basis.
In particular, the theoretical tools developed here can be used for fine tuning and optimization of control parameters in future experiments with electrons trapped above the surface of superfluid helium or solid neon.
arXiv Detail & Related papers (2023-10-07T21:40:20Z) - Halide perovskite artificial solids as a new platform to simulate
collective phenomena in doped Mott insulators [43.55994393060723]
We introduce artificial lattices made of lead halide perovskite nanocubes as a new platform to simulate and investigate the physics of correlated quantum materials.
We show that, at large photo-doping, the exciton gas undergoes an excitonic Mott transition, which fully realizes the magnetic-field-driven insulator-to-metal transition described by the Hubbard model.
Our results demonstrate that time-resolved experiments span a parameter region of the Hubbard model in which long-range and phase-coherent orders emerge out of a doped Mott insulating phase.
arXiv Detail & Related papers (2023-03-15T17:38:51Z) - Driving Force and Nonequilibrium Vibronic Dynamics in Charge Separation
of Strongly Bound Electron-Hole Pairs [59.94347858883343]
We study the dynamics of charge separation in one, two and three-dimensional donor-acceptor networks.
This allows us to identify the precise conditions in which underdamped vibrational motion induces efficient long-range charge separation.
arXiv Detail & Related papers (2022-05-11T17:51:21Z) - Resonant tunneling diodes in semiconductor microcavities: modeling
polaritonic features in the THz displacement current [0.0]
The effect of the quantized electromagnetic field in the displacement current of a resonant tunneling diode is analyzed.
This mimics known effects predicted by a Jaynes-Cummings model in closed systems.
The computational burden involved in the multi-time measurements of THz currents is tackled by invoking a Bohmian description of the light-matter interaction.
arXiv Detail & Related papers (2022-04-27T10:51:03Z) - Surface-induced decoherence and heating of charged particles [0.0]
We provide a theoretical toolbox for describing how the rotational and translational quantum dynamics of charged nano- to microscale objects is affected by near metallic and dielectric surfaces.
The resulting quantum master equations describe the coherent surface-particle interaction, due to image charges and Casimir-Polder potentials, as well as surface-induced decoherence and heating.
arXiv Detail & Related papers (2022-03-28T20:49:42Z) - Demonstration of electron-nuclear decoupling at a spin clock transition [54.088309058031705]
Clock transitions protect molecular spin qubits from magnetic noise.
linear coupling to nuclear degrees of freedom causes a modulation and decay of electronic coherence.
An absence of quantum information leakage to the nuclear bath provides opportunities to characterize other decoherence sources.
arXiv Detail & Related papers (2021-06-09T16:23:47Z) - Quantum surface effects in strong coupling dynamics [0.0]
Plasmons in nanostructured metals are widely utilized to trigger strong light--matter interactions with quantum light sources.
We study the role of quantum and surface effects in the plasmonic resonator.
arXiv Detail & Related papers (2021-02-22T08:52:38Z) - Quantum electrodynamics in a topological waveguide [47.187609203210705]
In this work we investigate the properties of superconducting qubits coupled to a metamaterial waveguide based on a photonic analog of the Su-Schrieffer-Heeger model.
We explore topologically-induced properties of qubits coupled to such a waveguide, ranging from the formation of directional qubit-photon bound states to topology-dependent cooperative radiation effects.
arXiv Detail & Related papers (2020-05-08T00:22:17Z) - Entanglement generation via power-of-SWAP operations between dynamic
electron-spin qubits [62.997667081978825]
Surface acoustic waves (SAWs) can create moving quantum dots in piezoelectric materials.
We show how electron-spin qubits located on dynamic quantum dots can be entangled.
arXiv Detail & Related papers (2020-01-15T19:00:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.