論文の概要: Time-MQA: Time Series Multi-Task Question Answering with Context Enhancement
- arxiv url: http://arxiv.org/abs/2503.01875v1
- Date: Wed, 26 Feb 2025 13:47:13 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-05 18:50:38.212215
- Title: Time-MQA: Time Series Multi-Task Question Answering with Context Enhancement
- Title(参考訳): Time-MQA: コンテキスト拡張による時系列マルチタスク質問回答
- Authors: Yaxuan Kong, Yiyuan Yang, Yoontae Hwang, Wenjie Du, Stefan Zohren, Zhangyang Wang, Ming Jin, Qingsong Wen,
- Abstract要約: Time Series Multi-Task Question Answering (Time-MQA)は、複数の時系列タスクにわたる自然言語クエリを可能にする統合フレームワークである。
Time-MQAの中心はTSQAデータセットである。
- 参考スコア(独自算出の注目度): 55.2439260314328
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Time series data are foundational in finance, healthcare, and energy domains. However, most existing methods and datasets remain focused on a narrow spectrum of tasks, such as forecasting or anomaly detection. To bridge this gap, we introduce Time Series Multi-Task Question Answering (Time-MQA), a unified framework that enables natural language queries across multiple time series tasks - numerical analytical tasks and open-ended question answering with reasoning. Central to Time-MQA is the TSQA dataset, a large-scale dataset containing $\sim$200k question-answer pairs derived from diverse time series spanning environment, traffic, etc. This comprehensive resource covers various time series lengths and promotes robust model development. We further demonstrate how continually pre-training large language models (Mistral 7B, Llama-3 8B, and Qwen-2.5 7B) on the TSQA dataset enhanced time series reasoning capabilities, moving beyond mere numeric tasks and enabling more advanced and intuitive interactions with temporal data. The complete TSQA dataset, models, executable codes, user study questionnaires for evaluation, and results have all been open-sourced.
- Abstract(参考訳): 時系列データは金融、医療、エネルギー分野に基礎を置いている。
しかし、既存の方法やデータセットのほとんどは、予測や異常検出など、狭い範囲のタスクに焦点を絞っている。
このギャップを埋めるために、時系列マルチタスク質問回答(Time-MQA)という、複数の時系列タスクをまたいだ自然言語クエリを可能にする統合フレームワークを紹介します。
Time-MQAの中心となるTSQAデータセットは、さまざまな時系列の分散環境やトラフィックから派生した$\sim$200kの質問応答ペアを含む大規模なデータセットである。
この包括的なリソースは、様々な時系列の長さをカバーし、堅牢なモデル開発を促進する。
さらに、TSQAデータセット上の大規模言語モデル(Mistral 7B, Llama-3 8B, Qwen-2.5 7B)が時系列推論機能を強化し、単なる数値タスクを超えて、時間データとのより先進的で直感的な対話を可能にすることを実証する。
完全なTSQAデータセット、モデル、実行可能コード、評価のためのユーザスタディアンケート、結果はすべてオープンソースである。
関連論文リスト
- Chat-TS: Enhancing Multi-Modal Reasoning Over Time-Series and Natural Language Data [22.274663165215237]
時系列分析は、医療、金融、交通、エネルギーなど幅広い分野において重要である。
現在の時系列モデルは、時系列とテキストコンテンツの両方を含む推論を行う能力に制限がある。
Chat-TSは時系列トークンをLLMの語彙に統合し、両方のモダリティに対する推論能力を高める。
論文 参考訳(メタデータ) (2025-03-13T21:05:11Z) - TimesBERT: A BERT-Style Foundation Model for Time Series Understanding [72.64824086839631]
GPTスタイルのモデルは時系列予測の基礎モデルとして位置づけられている。
BERTスタイルのアーキテクチャは時系列理解のために完全にアンロックされていない。
時系列の汎用表現を学ぶために TimesBERT を設計する。
私たちのモデルは、さまざまなドメインにまたがる2600億のタイムポイントで事前トレーニングされています。
論文 参考訳(メタデータ) (2025-02-28T17:14:44Z) - Language in the Flow of Time: Time-Series-Paired Texts Weaved into a Unified Temporal Narrative [65.84249211767921]
テキスト・アズ・タイム・シリーズ(英語版) (TaTS) は時系列の補助変数であると考えている。
TaTSは、既存の数値のみの時系列モデルにプラグインすることができ、ペア化されたテキストで時系列データを効率的に処理することができる。
論文 参考訳(メタデータ) (2025-02-13T03:43:27Z) - ChatTS: Aligning Time Series with LLMs via Synthetic Data for Enhanced Understanding and Reasoning [10.854285913078257]
本稿では,時系列解析用に設計された新しいMLLMであるChatTSを紹介する。
ChatTSは、視覚MLLMが画像を処理する方法と同様、時系列をモダリティとして扱う。
Time Series Evol-Instructは様々な時系列Q&Aを生成し、モデルの推論能力を高めます。
論文 参考訳(メタデータ) (2024-12-04T08:06:15Z) - Multi-Step Time Series Inference Agent for Reasoning and Automated Task Execution [19.64976935450366]
本稿では,合成推論と時系列解析の精度の両方を必要とする多段階時系列推論という新しいタスクを提案する。
テキスト内学習、自己補正、プログラム支援実行を統合することで、提案手法は正確かつ解釈可能な結果を保証する。
論文 参考訳(メタデータ) (2024-10-05T06:04:19Z) - Deep Time Series Models: A Comprehensive Survey and Benchmark [74.28364194333447]
時系列データは、現実世界のシナリオにおいて非常に重要である。
近年、時系列コミュニティで顕著なブレークスルーが見られた。
多様な分析タスクのためのディープ時系列モデルの公正なベンチマークとして、時系列ライブラリ(TSLib)をリリースします。
論文 参考訳(メタデータ) (2024-07-18T08:31:55Z) - A Survey of Time Series Foundation Models: Generalizing Time Series Representation with Large Language Model [33.17908422599714]
大規模な言語基盤モデルは、クロスタスク転送性、ゼロショット/フェーショット学習、意思決定説明性といった機能を公開した。
主な研究線は2つあり、例えば、時系列のためにゼロから事前訓練された基礎モデルと、時系列のために大きな言語基盤モデルを適用することである。
本調査は,関連研究の総合的な調査を行うための3E分析フレームワークを提供する。
論文 参考訳(メタデータ) (2024-05-03T03:12:55Z) - UniTS: A Unified Multi-Task Time Series Model [31.675845788410246]
UniTSは、予測タスクと生成タスクを単一のフレームワークに統合した、統合されたマルチタスク時系列モデルである。
UniTSは、人間の活動センサー、ヘルスケア、エンジニアリング、ファイナンスにまたがる38のデータセットでテストされている。
論文 参考訳(メタデータ) (2024-02-29T21:25:58Z) - Temporal Treasure Hunt: Content-based Time Series Retrieval System for
Discovering Insights [34.1973242428317]
時系列データは、金融、医療、製造業など、さまざまな分野にまたがっている。
Content-based Time Series Retrieval(CTSR)を実行する能力は、未知の時系列例を特定する上で重要である。
我々は,様々な領域の時系列データを含むCTSRベンチマークデータセットを提案する。
論文 参考訳(メタデータ) (2023-11-05T04:12:13Z) - Continuous-time convolutions model of event sequences [46.3471121117337]
イベントシーケンスは不均一でスパースであり、従来のモデルは不適当である。
我々は、時間とともに一様でない事象の発生を処理するために設計された効率的な畳み込みニューラルネットワークに基づくCOTICを提案する。
COTICは、次のイベント時間とタイプを予測する際に既存のモデルよりも優れており、最も近いライバルの3.714と比較して平均1.5のランクに達している。
論文 参考訳(メタデータ) (2023-02-13T10:34:51Z) - Instance-wise Graph-based Framework for Multivariate Time Series
Forecasting [69.38716332931986]
我々は,異なる時刻スタンプにおける変数の相互依存性を利用するための,シンプルで効率的なインスタンス単位のグラフベースのフレームワークを提案する。
私たちのフレームワークのキーとなる考え方は、異なる変数の履歴時系列から予測すべき現在の時系列に情報を集約することです。
論文 参考訳(メタデータ) (2021-09-14T07:38:35Z) - Connecting the Dots: Multivariate Time Series Forecasting with Graph
Neural Networks [91.65637773358347]
多変量時系列データに特化して設計された汎用グラフニューラルネットワークフレームワークを提案する。
グラフ学習モジュールを用いて,変数間の一方向関係を自動的に抽出する。
提案手法は,4つのベンチマークデータセットのうち3つにおいて,最先端のベースライン手法よりも優れている。
論文 参考訳(メタデータ) (2020-05-24T04:02:18Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。