論文の概要: ChatTS: Aligning Time Series with LLMs via Synthetic Data for Enhanced Understanding and Reasoning
- arxiv url: http://arxiv.org/abs/2412.03104v3
- Date: Wed, 16 Apr 2025 10:18:01 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-17 20:12:20.888359
- Title: ChatTS: Aligning Time Series with LLMs via Synthetic Data for Enhanced Understanding and Reasoning
- Title(参考訳): ChatTS: 理解と推論の強化を目的とした合成データによるLCMとの時系列調整
- Authors: Zhe Xie, Zeyan Li, Xiao He, Longlong Xu, Xidao Wen, Tieying Zhang, Jianjun Chen, Rui Shi, Dan Pei,
- Abstract要約: 本稿では,時系列解析用に設計された新しいMLLMであるChatTSを紹介する。
ChatTSは、視覚MLLMが画像を処理する方法と同様、時系列をモダリティとして扱う。
Time Series Evol-Instructは様々な時系列Q&Aを生成し、モデルの推論能力を高めます。
- 参考スコア(独自算出の注目度): 10.854285913078257
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Understanding time series is crucial for its application in real-world scenarios. Recently, large language models (LLMs) have been increasingly applied to time series tasks, leveraging their strong language capabilities to enhance various applications. However, research on multimodal LLMs (MLLMs) for time series understanding and reasoning remains limited, primarily due to the scarcity of high-quality datasets that align time series with textual information. This paper introduces ChatTS, a novel MLLM designed for time series analysis. ChatTS treats time series as a modality, similar to how vision MLLMs process images, enabling it to perform both understanding and reasoning with time series. To address the scarcity of training data, we propose an attribute-based method for generating synthetic time series with detailed attribute descriptions. We further introduce Time Series Evol-Instruct, a novel approach that generates diverse time series Q&As, enhancing the model's reasoning capabilities. To the best of our knowledge, ChatTS is the first TS-MLLM that takes multivariate time series as input for understanding and reasoning, which is fine-tuned exclusively on synthetic datasets. We evaluate its performance using benchmark datasets with real-world data, including six alignment tasks and four reasoning tasks. Our results show that ChatTS significantly outperforms existing vision-based MLLMs (e.g., GPT-4o) and text/agent-based LLMs, achieving a 46.0% improvement in alignment tasks and a 25.8% improvement in reasoning tasks. We have open-sourced the source code, model checkpoint and datasets at https://github.com/NetManAIOps/ChatTS.
- Abstract(参考訳): 時系列を理解することは、実世界のシナリオにおけるその応用にとって不可欠である。
近年,大規模言語モデル (LLM) が時系列タスクにますます適用され,その強力な言語機能を活用して様々なアプリケーションを強化している。
しかし、時系列理解と推論のためのマルチモーダルLLM(MLLM)の研究は、主に時系列とテキスト情報とを一致させる高品質なデータセットが不足しているため、依然として限られている。
本稿では,時系列解析用に設計された新しいMLLMであるChatTSを紹介する。
ChatTSは時系列を、視覚MLLMが画像を処理する方法と同様のモダリティとして扱い、時系列による理解と推論の両方を実行することができる。
トレーニングデータの不足に対処するため,詳細な属性記述を伴う合成時系列を生成する属性ベース手法を提案する。
さらに,多様な時系列Q&Aを生成する新しい手法であるTime Series Evol-Instructを導入し,モデルの推論能力を向上させる。
我々の知る限り、ChatTSは、多変量時系列を理解と推論の入力として取り込んだ最初のTS-MLLMであり、合成データセットのみに微調整されている。
我々は,6つのアライメントタスクと4つの推論タスクを含む実世界のデータを用いたベンチマークデータセットを用いて,その性能を評価する。
以上の結果から,ChatTSは既存の視覚型MLLM(例: GPT-4o)やテキスト/エージェント型LCM(例: GPT-4o)を著しく上回り,アライメントタスクの46.0%,推論タスクの25.8%の改善を実現している。
ソースコード、モデルチェックポイント、データセットをhttps://github.com/NetManAIOps/ChatTS.comでオープンソース化しました。
関連論文リスト
- LLM-PS: Empowering Large Language Models for Time Series Forecasting with Temporal Patterns and Semantics [56.99021951927683]
Time Series Forecasting (TSF) は、金融計画や健康モニタリングなど、多くの現実世界のドメインにおいて重要である。
既存のLarge Language Models (LLM) は通常、時系列データ固有の特性を無視するため、非最適に実行する。
時系列データから基本的なtextitPatterns と有意義な textitSemantics を学習し,TLF のための LLM-PS を提案する。
論文 参考訳(メタデータ) (2025-03-12T11:45:11Z) - A Time Series Multitask Framework Integrating a Large Language Model, Pre-Trained Time Series Model, and Knowledge Graph [1.3654846342364308]
時系列分析は金融、交通、産業などの分野において重要である。
本稿では,時間的特徴をテキスト記述と統合した新しい時系列マルチタスクフレームワーク LTM を提案する。
ベンチマークデータセットの実験では、LTMが既存のメソッドよりも大幅に優れていることが示されている。
論文 参考訳(メタデータ) (2025-03-10T11:25:01Z) - Time-MQA: Time Series Multi-Task Question Answering with Context Enhancement [55.2439260314328]
Time Series Multi-Task Question Answering (Time-MQA)は、複数の時系列タスクにわたる自然言語クエリを可能にする統合フレームワークである。
Time-MQAの中心はTSQAデータセットである。
論文 参考訳(メタデータ) (2025-02-26T13:47:13Z) - Language in the Flow of Time: Time-Series-Paired Texts Weaved into a Unified Temporal Narrative [65.84249211767921]
テキスト・アズ・タイム・シリーズ(英語版) (TaTS) は時系列の補助変数であると考えている。
TaTSは、既存の数値のみの時系列モデルにプラグインすることができ、ペア化されたテキストで時系列データを効率的に処理することができる。
論文 参考訳(メタデータ) (2025-02-13T03:43:27Z) - Position: Empowering Time Series Reasoning with Multimodal LLMs [49.73647759532127]
マルチモーダル言語モデル (MLLM) は時系列解析においてより強力で柔軟な推論を可能にすると論じる。
我々は、MLLMにおける信頼、解釈可能性、堅牢な推論を優先する戦略を開発することで、この可能性を活用するよう研究者や実践者に呼びかける。
論文 参考訳(メタデータ) (2025-02-03T16:10:48Z) - Time Series Language Model for Descriptive Caption Generation [11.796431549951055]
本稿では,時系列キャプションに特化して設計された新しい時系列言語モデルTSLMを紹介する。
TSLMはエンコーダ・デコーダモデルとして機能し、テキストプロンプトと時系列データ表現の両方を活用する。
TSLMは、複数のデータモダリティから既存の最先端アプローチよりも大きなマージンで優れていることを示す。
論文 参考訳(メタデータ) (2025-01-03T14:34:30Z) - TableTime: Reformulating Time Series Classification as Zero-Shot Table Understanding via Large Language Models [54.44272772296578]
大規模言語モデル (LLM) は多変量時系列分類において有効であることを示した。
LLM は LLM の潜在空間内の時系列の埋め込みを直接コードし、LLM の意味空間と一致させる。
MTSCを表理解タスクとして再編成するテーブルタイムを提案する。
論文 参考訳(メタデータ) (2024-11-24T07:02:32Z) - AutoTimes: Autoregressive Time Series Forecasters via Large Language Models [67.83502953961505]
AutoTimesは時系列を言語トークンの埋め込み空間に投影し、任意の長さで将来予測を生成する。
時系列をプロンプトとして定式化し、ルックバックウィンドウを越えて予測のコンテキストを拡張する。
AutoTimesは、トレーニング可能なパラメータが0.1%、トレーニング/推論のスピードアップが5ドル以上で最先端を実現している。
論文 参考訳(メタデータ) (2024-02-04T06:59:21Z) - Large Language Models for Time Series: A Survey [34.24258745427964]
大規模言語モデル (LLM) は自然言語処理やコンピュータビジョンといった領域で広く利用されている。
LLMは、気候、IoT、ヘルスケア、トラフィック、オーディオ、ファイナンスといった分野の恩恵を受けながら、時系列データを分析する上で、大きな可能性を秘めている。
論文 参考訳(メタデータ) (2024-02-02T07:24:35Z) - Time-LLM: Time Series Forecasting by Reprogramming Large Language Models [110.20279343734548]
時系列予測は多くの実世界の力学系において重要な意味を持つ。
時系列予測のための大規模言語モデルを再利用するための再プログラミングフレームワークであるTime-LLMを提案する。
Time-LLMは、最先端の特殊な予測モデルよりも優れた、強力な時系列学習者である。
論文 参考訳(メタデータ) (2023-10-03T01:31:25Z) - LLM4TS: Aligning Pre-Trained LLMs as Data-Efficient Time-Series
Forecasters [12.887118862534331]
事前学習された大言語モデル(LLM)を用いた時系列予測のためのフレームワークを提案する。
LLM4TSは、LLMを時系列データのニュアンスに合わせるための2段階の微調整戦略と、下流の時系列予測タスクのためのテキスト予測微調整ステージから構成される。
我々のフレームワークは、事前訓練されたLLM内に多段階の時間データを統合し、時間固有の情報を解釈する能力を向上する新しい2段階集約手法を特徴としている。
論文 参考訳(メタデータ) (2023-08-16T16:19:50Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。