QCS-ADME: Quantum Circuit Search for Drug Property Prediction with Imbalanced Data and Regression Adaptation
- URL: http://arxiv.org/abs/2503.01927v1
- Date: Sun, 02 Mar 2025 19:29:04 GMT
- Title: QCS-ADME: Quantum Circuit Search for Drug Property Prediction with Imbalanced Data and Regression Adaptation
- Authors: Kangyu Zheng, Tianfan Fu, Zhiding Liang,
- Abstract summary: We propose a novel training-free scoring mechanism to evaluate QML circuit performance on imbalanced classification and regression tasks.<n>Our mechanism demonstrates significant correlation between scoring metrics and test performance on imbalanced classification tasks.<n>This represents the first comprehensive approach to searching and evaluating QCS circuits specifically for regression applications.
- Score: 11.101993017609246
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The biomedical field is beginning to explore the use of quantum machine learning (QML) for tasks traditionally handled by classical machine learning, especially in predicting ADME (absorption, distribution, metabolism, and excretion) properties, which are essential in drug evaluation. However, ADME tasks pose unique challenges for existing quantum computing systems (QCS) frameworks, as they involve both classification with unbalanced dataset and regression problems. These dual requirements make it necessary to adapt and refine current QCS frameworks to effectively address the complexities of ADME predictions. We propose a novel training-free scoring mechanism to evaluate QML circuit performance on imbalanced classification and regression tasks. Our mechanism demonstrates significant correlation between scoring metrics and test performance on imbalanced classification tasks. Additionally, we develop methods to quantify continuous similarity relationships between quantum states, enabling performance prediction for regression tasks. This represents the first comprehensive approach to searching and evaluating QCS circuits specifically for regression applications. Validation on representative ADME tasks-one imbalanced classification and one regression-demonstrates moderate positive correlation between our scoring metrics and circuit performance, significantly outperforming baseline scoring methods that show negligible correlation.
Related papers
- Robust Machine Unlearning for Quantized Neural Networks via Adaptive Gradient Reweighting with Similar Labels [5.868949328814509]
Model quantization enables efficient deployment of deep neural networks on edge devices through low-bit parameter representation.
Existing machine unlearning (MU) methods fail to address two fundamental limitations in quantized networks.
We propose Q-MUL, the first dedicated unlearning framework for quantized models.
arXiv Detail & Related papers (2025-03-18T05:22:13Z) - Dynamic-KGQA: A Scalable Framework for Generating Adaptive Question Answering Datasets [9.785129730843435]
We introduce Dynamic-KGQA, a scalable framework for generating adaptive QA datasets from knowledge graphs.
Unlike fixed benchmarks, Dynamic-KGQA generates a new dataset variant on every run while preserving the underlying distribution.
Dynamic-KGQA produces compact, semantically coherent subgraphs that facilitate both training and evaluation of KGQA models.
arXiv Detail & Related papers (2025-03-06T23:58:01Z) - Modeling Quantum Machine Learning for Genomic Data Analysis [12.248184406275405]
Quantum Machine Learning (QML) continues to evolve, unlocking new opportunities for diverse applications.<n>We investigate and evaluate the applicability of QML models for binary classification of genome sequence data by employing various feature mapping techniques.<n>We present an open-source, independent Qiskit-based implementation to conduct experiments on a benchmark genomic dataset.
arXiv Detail & Related papers (2025-01-14T15:14:26Z) - Regression and Classification with Single-Qubit Quantum Neural Networks [0.0]
We use a resource-efficient and scalable Single-Qubit Quantum Neural Network (SQQNN) for both regression and classification tasks.<n>For classification, we introduce a novel training method inspired by the Taylor series, which can efficiently find a global minimum in a single step.<n>The SQQNN exhibits virtually error-free and strong performance in regression and classification tasks, including the MNIST dataset.
arXiv Detail & Related papers (2024-12-12T17:35:36Z) - Toward Automated Quantum Variational Machine Learning [0.0]
We develop a multi-locality parallelizable search algorithm, called MUSE, to find the initial points and the sets of parameters.
MUSE improves the detection accuracy of quantum variational classifiers 2.3 times with respect to the observed lowest scores.
The classification and regression scores of the quantum variational models trained with MUSE are on par with the classical counterparts.
arXiv Detail & Related papers (2023-12-04T01:47:05Z) - Pointer Networks with Q-Learning for Combinatorial Optimization [55.2480439325792]
We introduce the Pointer Q-Network (PQN), a hybrid neural architecture that integrates model-free Q-value policy approximation with Pointer Networks (Ptr-Nets)
Our empirical results demonstrate the efficacy of this approach, also testing the model in unstable environments.
arXiv Detail & Related papers (2023-11-05T12:03:58Z) - Weight Re-Mapping for Variational Quantum Algorithms [54.854986762287126]
We introduce the concept of weight re-mapping for variational quantum circuits (VQCs)
We employ seven distinct weight re-mapping functions to assess their impact on eight classification datasets.
Our results indicate that weight re-mapping can enhance the convergence speed of the VQC.
arXiv Detail & Related papers (2023-06-09T09:42:21Z) - QAFactEval: Improved QA-Based Factual Consistency Evaluation for
Summarization [116.56171113972944]
We show that carefully choosing the components of a QA-based metric is critical to performance.
Our solution improves upon the best-performing entailment-based metric and achieves state-of-the-art performance.
arXiv Detail & Related papers (2021-12-16T00:38:35Z) - Scalable Intervention Target Estimation in Linear Models [52.60799340056917]
Current approaches to causal structure learning either work with known intervention targets or use hypothesis testing to discover the unknown intervention targets.
This paper proposes a scalable and efficient algorithm that consistently identifies all intervention targets.
The proposed algorithm can be used to also update a given observational Markov equivalence class into the interventional Markov equivalence class.
arXiv Detail & Related papers (2021-11-15T03:16:56Z) - Classification-based Quality Estimation: Small and Efficient Models for
Real-world Applications [29.380675447523817]
Sentence-level Quality estimation (QE) of machine translation is traditionally formulated as a regression task.
Recent QE models have achieved previously-unseen levels of correlation with human judgments.
We evaluate several model compression techniques for QE and find that, despite their popularity in other NLP tasks, they lead to poor performance in this regression setting.
arXiv Detail & Related papers (2021-09-17T16:14:52Z) - Cross Learning in Deep Q-Networks [82.20059754270302]
We propose a novel cross Q-learning algorithm, aim at alleviating the well-known overestimation problem in value-based reinforcement learning methods.
Our algorithm builds on double Q-learning, by maintaining a set of parallel models and estimate the Q-value based on a randomly selected network.
arXiv Detail & Related papers (2020-09-29T04:58:17Z) - Predicting toxicity by quantum machine learning [11.696069523681178]
We develop QML models for predicting the toxicity of 221 phenols on the basis of quantitative structure activity relationship.
Results suggest that our data encoding enhanced by quantum entanglement provided more expressive power than the previous ones.
arXiv Detail & Related papers (2020-08-18T02:59:40Z) - Q-GADMM: Quantized Group ADMM for Communication Efficient Decentralized Machine Learning [66.18202188565922]
We propose a communication-efficient decentralized machine learning (ML) algorithm, coined QGADMM (QGADMM)<n>We develop a novel quantization method to adaptively adjust modelization levels and their probabilities, while proving the convergence of QGADMM for convex functions.
arXiv Detail & Related papers (2019-10-23T10:47:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.