論文の概要: Adaptively profiling models with task elicitation
- arxiv url: http://arxiv.org/abs/2503.01986v2
- Date: Tue, 20 May 2025 19:15:44 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-22 15:42:57.808806
- Title: Adaptively profiling models with task elicitation
- Title(参考訳): タスク誘発を伴う適応的プロファイリングモデル
- Authors: Davis Brown, Prithvi Balehannina, Helen Jin, Shreya Havaldar, Hamed Hassani, Eric Wong,
- Abstract要約: Task Elicitationは、フロンティアモデルが体系的な失敗を示す数百の自然言語タスクを見つける。
我々は、Sonnet 3.5が量子コンピューティングとAGIを過度に関連付けており、o3-miniは、製造がコンテキスト内で繰り返されるときに幻覚を起こす傾向があることを発見した。
- 参考スコア(独自算出の注目度): 29.704450391533864
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Language model evaluations often fail to characterize consequential failure modes, forcing experts to inspect outputs and build new benchmarks. We introduce task elicitation, a method that automatically builds new evaluations to profile model behavior. Task elicitation finds hundreds of natural-language tasks -- an order of magnitude more than prior work -- where frontier models exhibit systematic failures, in domains ranging from forecasting to online harassment. For example, we find that Sonnet 3.5 over-associates quantum computing and AGI and that o3-mini is prone to hallucination when fabrications are repeated in-context.
- Abstract(参考訳): 言語モデルの評価は、連続的な失敗モードの特徴付けに失敗することが多いため、専門家はアウトプットを検査し、新しいベンチマークを構築することを余儀なくされる。
本稿では,プロファイルモデルの振る舞いに新たな評価を自動生成するタスクエリケーションを提案する。
タスクエリケーションは、予測からオンラインハラスメントまでの領域において、フロンティアモデルが体系的な失敗を示す、数百の自然言語タスク(前よりも桁違いに多い)を見つける。
例えば、Sonnet 3.5 は量子コンピューティングと AGI を過度に関連付けており、o3-mini は製造がコンテキスト内で繰り返されるときに幻覚を起こす傾向がある。
関連論文リスト
- Self-Steering Language Models [113.96916935955842]
DisCIPLは、"セルフステアリング(self-steering)"言語モデルのメソッドである。
DisCIPLはPlannerモデルを使用してタスク固有の推論プログラムを生成する。
我々の研究は、高度に並列化されたモンテカルロ推論戦略の設計空間を開く。
論文 参考訳(メタデータ) (2025-04-09T17:54:22Z) - Do Language Models Understand the Cognitive Tasks Given to Them? Investigations with the N-Back Paradigm [9.577716124021029]
GPT 3.5の2-backタスクと3-backタスクのパフォーマンス低下は、人間のように動作するメモリ容量の限界を反映していることを示す。
これらのタスクにおける様々なパフォーマンスレベルのオープンソース言語モデルを解析することにより、少なくともタスク理解とタスクセットのメンテナンスの制限によるパフォーマンスの低下が少なくとも一部原因であることを示す。
論文 参考訳(メタデータ) (2024-12-24T03:06:52Z) - Unsupervised Model Diagnosis [49.36194740479798]
本稿では,ユーザガイドを使わずに,意味論的対実的説明を生成するために,Unsupervised Model Diagnosis (UMO)を提案する。
提案手法は意味論における変化を特定し可視化し,その変化を広範囲なテキストソースの属性と照合する。
論文 参考訳(メタデータ) (2024-10-08T17:59:03Z) - Revisiting SMoE Language Models by Evaluating Inefficiencies with Task Specific Expert Pruning [78.72226641279863]
SMOE(Sparse Mixture of Expert)モデルは、言語モデリングにおける高密度モデルに代わるスケーラブルな代替品として登場した。
本研究は,SMoEアーキテクチャの設計に関する意思決定を行うために,タスク固有のモデルプルーニングについて検討する。
適応型タスク対応プルーニング手法 UNCURL を導入し,MoE 層当たりの専門家数をオフラインで学習する手法を提案する。
論文 参考訳(メタデータ) (2024-09-02T22:35:03Z) - SKADA-Bench: Benchmarking Unsupervised Domain Adaptation Methods with Realistic Validation On Diverse Modalities [55.87169702896249]
Unsupervised Domain Adaptation (DA) は、ラベル付きソースドメインでトレーニングされたモデルを適用して、ラベルなしのターゲットドメインでデータ分散シフトをうまく実行する。
本稿では,再重み付け,マッピング,部分空間アライメントなど,既存の浅層アルゴリズムの完全かつ公平な評価を行う。
本ベンチマークでは,現実的な検証の重要性を強調し,現実的なアプリケーションに対する実践的なガイダンスを提供する。
論文 参考訳(メタデータ) (2024-07-16T12:52:29Z) - OLMES: A Standard for Language Model Evaluations [64.85905119836818]
OLMESは、再現可能な言語モデル評価のための文書化された、実用的な、オープンな標準である。
これは、複数の質問の非自然的な「閉じた」定式化を必要とする小さなベースモデル間の有意義な比較をサポートする。
OLMESには、既存の文献の結果によってガイドされた、よく考えられたドキュメント化されたレコメンデーションと、オープンな質問を解決する新しい実験が含まれている。
論文 参考訳(メタデータ) (2024-06-12T17:37:09Z) - AttributionScanner: A Visual Analytics System for Model Validation with Metadata-Free Slice Finding [29.07617945233152]
データスライス検索は、低パフォーマンスを示すデータセット内のサブグループを特定し解析することで、機械学習(ML)モデルを検証するための新興技術である。
このアプローチは、追加メタデータに対する退屈でコストのかかる要件を含む、重大な課題に直面します。
本稿では,メタデータを含まないデータスライス検索用に設計された,革新的なビジュアルアナリティクス(VA)システムであるAttributionScannerを紹介する。
本システムでは、一般的なモデル動作を含む解釈可能なデータスライスを特定し、属性モザイク設計によりこれらのパターンを可視化する。
論文 参考訳(メタデータ) (2024-01-12T09:17:32Z) - Adapting Large Language Models for Content Moderation: Pitfalls in Data
Engineering and Supervised Fine-tuning [79.53130089003986]
大規模言語モデル(LLM)は、様々なドメインでタスクを処理するための実現可能なソリューションとなっている。
本稿では、コンテンツモデレーションのためにプライベートにデプロイ可能なLLMモデルを微調整する方法を紹介する。
論文 参考訳(メタデータ) (2023-10-05T09:09:44Z) - Fusing Models with Complementary Expertise [42.099743709292866]
データ分布の相補的な知識で専門家モデルの出力を融合させるFoE(Fusion of Experts)問題を考える。
我々の方法は差別的タスクと生成的タスクの両方に当てはまる。
テスト時に専門家によるモデル評価の回数を減らすことが望まれる「フルーガル」設定にメソッドを拡張します。
論文 参考訳(メタデータ) (2023-10-02T18:31:35Z) - Bring Your Own Data! Self-Supervised Evaluation for Large Language
Models [52.15056231665816]
大規模言語モデル(LLM)の自己教師型評価のためのフレームワークを提案する。
閉書知識,毒性,長期文脈依存性を測定するための自己指導型評価戦略を実証する。
自己監督評価と人監督評価との間には強い相関関係が認められた。
論文 参考訳(メタデータ) (2023-06-23T17:59:09Z) - Earning Extra Performance from Restrictive Feedbacks [41.05874087063763]
モデルチューニング問題の形式を記述するために,rerestriCTive feeddbacks (EXPECTED) から emphEarning eXtra PerformancE という課題を設定した。
モデルプロバイダの目標は、最終的にフィードバックを利用することで、ローカルユーザに対して満足のいくモデルを提供することです。
本稿では,パラメータ分布を探索し,モデルパラメータに関するモデル性能の幾何を特徴付けることを提案する。
論文 参考訳(メタデータ) (2023-04-28T13:16:54Z) - Variable Importance Matching for Causal Inference [73.25504313552516]
これらの目標を達成するためのModel-to-Matchと呼ばれる一般的なフレームワークについて説明する。
Model-to-Matchは、距離メートル法を構築するために変数重要度測定を使用する。
LASSO を用いて Model-to-Match フレームワークを運用する。
論文 参考訳(メタデータ) (2023-02-23T00:43:03Z) - Operationalizing Specifications, In Addition to Test Sets for Evaluating
Constrained Generative Models [17.914521288548844]
生成モデルのスケールは、評価自体が実行される抽象レベルを高めるために利用することができると論じる。
我々の勧告は、生成品質を評価するための強力な手段として仕様を活用することに基づいている。
論文 参考訳(メタデータ) (2022-11-19T06:39:43Z) - Discover, Explanation, Improvement: An Automatic Slice Detection
Framework for Natural Language Processing [72.14557106085284]
スライス検出モデル(SDM)は、データポイントの低パフォーマンスなグループを自動的に識別する。
本稿では,NLPタスクの分類のための "Discover, Explain, improve (DEIM)" というベンチマークを提案する。
評価の結果,Edisaは情報的セマンティックな特徴を持つ誤り発生データポイントを正確に選択できることがわかった。
論文 参考訳(メタデータ) (2022-11-08T19:00:00Z) - Assessing Out-of-Domain Language Model Performance from Few Examples [38.245449474937914]
ドメイン外性能(OOD)を数ショットで予測するタスクに対処する。
数ショットの例でモデル精度をみると、このタスクのパフォーマンスをベンチマークする。
帰属に基づく要因がOODの相対モデルの性能のランク付けに有効であることを示す。
論文 参考訳(メタデータ) (2022-10-13T04:45:26Z) - Generalization Properties of Retrieval-based Models [50.35325326050263]
検索ベースの機械学習手法は、幅広い問題で成功をおさめた。
これらのモデルの約束を示す文献が増えているにもかかわらず、そのようなモデルの理論的基盤はいまだに解明されていない。
本稿では,その一般化能力を特徴付けるために,検索ベースモデルの形式的処理を行う。
論文 参考訳(メタデータ) (2022-10-06T00:33:01Z) - A Generative Language Model for Few-shot Aspect-Based Sentiment Analysis [90.24921443175514]
我々は、アスペクト項、カテゴリを抽出し、対応する極性を予測するアスペクトベースの感情分析に焦点を当てる。
本稿では,一方向の注意を伴う生成言語モデルを用いて,抽出タスクと予測タスクをシーケンス生成タスクに再構成することを提案する。
提案手法は,従来の最先端(BERTをベースとした)の性能を,数ショットとフルショットの設定において,大きなマージンで上回ります。
論文 参考訳(メタデータ) (2022-04-11T18:31:53Z) - Avoiding Inference Heuristics in Few-shot Prompt-based Finetuning [57.4036085386653]
文ペア分類タスクのプロンプトベースモデルでは,語彙重なりに基づく推論の一般的な落とし穴が依然として残っていることを示す。
そこで,プレトレーニングウェイトを保存する正規化を加えることは,この破壊的な微調整の傾向を緩和するのに有効であることを示す。
論文 参考訳(メタデータ) (2021-09-09T10:10:29Z) - Calibrating Over-Parametrized Simulation Models: A Framework via
Eligibility Set [3.862247454265944]
厳密な頻繁な統計的保証を満たす校正手法を開発するための枠組みを開発する。
本手法は,書籍市場シミュレータのキャリブレーションへの応用を含む,いくつかの数値例で実証する。
論文 参考訳(メタデータ) (2021-05-27T00:59:29Z) - Language Models are Few-Shot Learners [61.36677350504291]
言語モデルのスケールアップにより、タスクに依存しない、少数ショットのパフォーマンスが大幅に向上することを示す。
我々は、1750億のパラメータを持つ自動回帰言語モデルであるGPT-3を訓練し、その性能を数ショットでテストする。
GPT-3は、翻訳、質問応答、クローズタスクを含む多くのNLPデータセットで高いパフォーマンスを達成する。
論文 参考訳(メタデータ) (2020-05-28T17:29:03Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。