論文の概要: Calibrating Over-Parametrized Simulation Models: A Framework via
Eligibility Set
- arxiv url: http://arxiv.org/abs/2105.12893v1
- Date: Thu, 27 May 2021 00:59:29 GMT
- ステータス: 処理完了
- システム内更新日: 2021-05-28 16:00:29.966336
- Title: Calibrating Over-Parametrized Simulation Models: A Framework via
Eligibility Set
- Title(参考訳): 過パラメータシミュレーションモデルの校正:適性セットによる枠組み
- Authors: Yuanlu Bai and Tucker Balch and Haoxian Chen and Danial Dervovic and
Henry Lam and Svitlana Vyetrenko
- Abstract要約: 厳密な頻繁な統計的保証を満たす校正手法を開発するための枠組みを開発する。
本手法は,書籍市場シミュレータのキャリブレーションへの応用を含む,いくつかの数値例で実証する。
- 参考スコア(独自算出の注目度): 3.862247454265944
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Stochastic simulation aims to compute output performance for complex models
that lack analytical tractability. To ensure accurate prediction, the model
needs to be calibrated and validated against real data. Conventional methods
approach these tasks by assessing the model-data match via simple hypothesis
tests or distance minimization in an ad hoc fashion, but they can encounter
challenges arising from non-identifiability and high dimensionality. In this
paper, we investigate a framework to develop calibration schemes that satisfy
rigorous frequentist statistical guarantees, via a basic notion that we call
eligibility set designed to bypass non-identifiability via a set-based
estimation. We investigate a feature extraction-then-aggregation approach to
construct these sets that target at multivariate outputs. We demonstrate our
methodology on several numerical examples, including an application to
calibration of a limit order book market simulator (ABIDES).
- Abstract(参考訳): 確率シュミレーションは解析性に欠ける複雑なモデルの出力性能を計算することを目的としている。
正確な予測を保証するためには、モデルを校正し、実際のデータに対して検証する必要がある。
従来の手法では、単純な仮説テストや距離最小化によるモデルデータマッチングをアドホックな方法で評価するが、非識別性と高次元から生じる課題に直面することがある。
本稿では,厳密な頻度主義的統計保証を満たすキャリブレーションスキームを開発するための枠組みを,集合ベース推定による非識別性をバイパスするように設計された適性セットと呼ぶ基本的な概念を用いて検討する。
多変量出力で対象とするこれらの集合を構成するための特徴抽出-理論集約手法について検討する。
本稿では,制限順序ブックマーケットシミュレータ (ABIDES) の校正など,いくつかの数値例で方法論を実証する。
関連論文リスト
- Towards Learning Stochastic Population Models by Gradient Descent [0.0]
パラメータと構造を同時に推定することで,最適化手法に大きな課題が生じることを示す。
モデルの正確な推定を実証するが、擬似的、解釈可能なモデルの推論を強制することは、難易度を劇的に高める。
論文 参考訳(メタデータ) (2024-04-10T14:38:58Z) - Variational Shapley Network: A Probabilistic Approach to Self-Explaining
Shapley values with Uncertainty Quantification [2.6699011287124366]
シェープ価値は、モデル決定プロセスの解明のための機械学習(ML)の基礎ツールとして現れている。
本稿では,Shapley値の計算を大幅に単純化し,単一のフォワードパスしか必要としない,新しい自己説明手法を提案する。
論文 参考訳(メタデータ) (2024-02-06T18:09:05Z) - Variable Importance Matching for Causal Inference [73.25504313552516]
これらの目標を達成するためのModel-to-Matchと呼ばれる一般的なフレームワークについて説明する。
Model-to-Matchは、距離メートル法を構築するために変数重要度測定を使用する。
LASSO を用いて Model-to-Match フレームワークを運用する。
論文 参考訳(メタデータ) (2023-02-23T00:43:03Z) - Rigorous Assessment of Model Inference Accuracy using Language
Cardinality [5.584832154027001]
我々は,統計的推定を決定論的精度尺度に置き換えることで,モデル精度評価におけるバイアスと不確実性を最小化する体系的アプローチを開発する。
我々は、最先端の推論ツールによって推定されるモデルの精度を評価することによって、我々のアプローチの一貫性と適用性を実験的に実証した。
論文 参考訳(メタデータ) (2022-11-29T21:03:26Z) - Spectral Representation Learning for Conditional Moment Models [33.34244475589745]
本研究では,不適切度を制御した表現を自動学習する手法を提案する。
本手法は,条件付き期待演算子のスペクトル分解によって定義される線形表現を近似する。
この表現をデータから効率的に推定できることを示し、得られた推定値に対してL2整合性を確立する。
論文 参考訳(メタデータ) (2022-10-29T07:48:29Z) - Modular Conformal Calibration [80.33410096908872]
回帰における再校正のためのアルゴリズムを多種多様なクラスで導入する。
このフレームワークは、任意の回帰モデルをキャリブレーションされた確率モデルに変換することを可能にする。
我々は17の回帰データセットに対するMCCの実証的研究を行った。
論文 参考訳(メタデータ) (2022-06-23T03:25:23Z) - Approximating Constraint Manifolds Using Generative Models for
Sampling-Based Constrained Motion Planning [8.924344714683814]
本稿では,制約付き動作計画問題に対する学習に基づくサンプリング戦略を提案する。
本研究では,条件変数自動エンコーダ(CVAE)と条件生成適応ネット(CGAN)を用いて制約条件を満たすサンプル構成を生成する。
これら2つの生成モデルの有効性を,サンプリング精度とサンプリング分布のカバレッジの観点から評価した。
論文 参考訳(メタデータ) (2022-04-14T07:08:30Z) - Predictive machine learning for prescriptive applications: a coupled
training-validating approach [77.34726150561087]
規範的応用のための予測機械学習モデルをトレーニングするための新しい手法を提案する。
このアプローチは、標準的なトレーニング検証テストスキームの検証ステップを微調整することに基づいている。
合成データを用いたいくつかの実験は、決定論的モデルと実モデルの両方において処方料コストを削減できる有望な結果を示した。
論文 参考訳(メタデータ) (2021-10-22T15:03:20Z) - How Faithful is your Synthetic Data? Sample-level Metrics for Evaluating
and Auditing Generative Models [95.8037674226622]
ドメインに依存しない方法で生成モデルの忠実度,多様性,一般化性能を特徴付ける3次元評価指標を提案する。
当社のメトリクスは、精度リコール分析により統計的発散測定を統合し、モデル忠実度と多様性のサンプルおよび分布レベルの診断を可能にします。
論文 参考訳(メタデータ) (2021-02-17T18:25:30Z) - Goal-directed Generation of Discrete Structures with Conditional
Generative Models [85.51463588099556]
本稿では,強化学習目標を直接最適化し,期待される報酬を最大化するための新しいアプローチを提案する。
提案手法は、ユーザ定義プロパティを持つ分子の生成と、所定の目標値を評価する短いピソン表現の同定という2つのタスクで検証する。
論文 参考訳(メタデータ) (2020-10-05T20:03:13Z) - Control as Hybrid Inference [62.997667081978825]
本稿では、反復推論と償却推論のバランスを自然に仲介するCHIの実装について述べる。
連続的な制御ベンチマークでアルゴリズムのスケーラビリティを検証し、強力なモデルフリーおよびモデルベースラインを上回る性能を示す。
論文 参考訳(メタデータ) (2020-07-11T19:44:09Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。