A Lightweight and Secure Deep Learning Model for Privacy-Preserving Federated Learning in Intelligent Enterprises
- URL: http://arxiv.org/abs/2503.02017v1
- Date: Mon, 03 Mar 2025 19:51:13 GMT
- Title: A Lightweight and Secure Deep Learning Model for Privacy-Preserving Federated Learning in Intelligent Enterprises
- Authors: Reza Fotohi, Fereidoon Shams Aliee, Bahar Farahani,
- Abstract summary: In intelligent enterprises, machine learning based models are adopted to extract insights from data.<n>FedAnil+ is a novel, lightweight, and secure Federated Deep Learning Model that includes three main phases.<n>Experiment results validate that FedAnil+ is secure against inference and poisoning attacks with better accuracy.
- Score: 0.5461938536945723
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The ever growing Internet of Things (IoT) connections drive a new type of organization, the Intelligent Enterprise. In intelligent enterprises, machine learning based models are adopted to extract insights from data. Due to the efficiency and privacy challenges of these traditional models, a new federated learning (FL) paradigm has emerged. In FL, multiple enterprises can jointly train a model to update a final model. However, firstly, FL trained models usually perform worse than centralized models, especially when enterprises training data is non-IID (Independent and Identically Distributed). Second, due to the centrality of FL and the untrustworthiness of local enterprises, traditional FL solutions are vulnerable to poisoning and inference attacks and violate privacy. Thirdly, the continuous transfer of parameters between enterprises and servers increases communication costs. To this end, the FedAnil+ model is proposed, a novel, lightweight, and secure Federated Deep Learning Model that includes three main phases. In the first phase, the goal is to solve the data type distribution skew challenge. Addressing privacy concerns against poisoning and inference attacks is covered in the second phase. Finally, to alleviate the communication overhead, a novel compression approach is proposed that significantly reduces the size of the updates. The experiment results validate that FedAnil+ is secure against inference and poisoning attacks with better accuracy. In addition, it shows improvements over existing approaches in terms of model accuracy (13%, 16%, and 26%), communication cost (17%, 21%, and 25%), and computation cost (7%, 9%, and 11%).
Related papers
- Decentralized and Robust Privacy-Preserving Model Using Blockchain-Enabled Federated Deep Learning in Intelligent Enterprises [0.5461938536945723]
We propose FedAnil, a secure blockchain enabled Federated Deep Learning Model.<n>It improves enterprise models decentralization, performance, and tamper proof properties.<n>Extensive experiments were conducted using the Sent140, FashionMNIST, FEMNIST, and CIFAR10 new real world datasets.
arXiv Detail & Related papers (2025-02-18T15:17:25Z) - One-shot Federated Learning via Synthetic Distiller-Distillate Communication [63.89557765137003]
One-shot Federated learning (FL) is a powerful technology facilitating collaborative training of machine learning models in a single round of communication.<n>We propose FedSD2C, a novel and practical one-shot FL framework designed to address these challenges.
arXiv Detail & Related papers (2024-12-06T17:05:34Z) - Fed-Credit: Robust Federated Learning with Credibility Management [18.349127735378048]
Federated Learning (FL) is an emerging machine learning approach enabling model training on decentralized devices or data sources.
We propose a robust FL approach based on the credibility management scheme, called Fed-Credit.
The results exhibit superior accuracy and resilience against adversarial attacks, all while maintaining comparatively low computational complexity.
arXiv Detail & Related papers (2024-05-20T03:35:13Z) - Secure Decentralized Learning with Blockchain [13.795131629462798]
Federated Learning (FL) is a well-known paradigm of distributed machine learning on mobile and IoT devices.
To avoid the single point of failure problem in FL, decentralized learning (DFL) has been proposed to use peer-to-peer communication for model aggregation.
arXiv Detail & Related papers (2023-10-10T23:45:17Z) - Towards Understanding Adversarial Transferability in Federated Learning [14.417827137513369]
A group of malicious clients has impacted the model during training by disguising their identities and acting as benign clients but later switching to an adversarial role.
This type of attack is subtle and hard to detect because these clients initially appear to be benign.
We empirically show that the proposed attack imposes a high security risk to current FL systems.
arXiv Detail & Related papers (2023-10-01T08:35:46Z) - FedDM: Iterative Distribution Matching for Communication-Efficient
Federated Learning [87.08902493524556]
Federated learning(FL) has recently attracted increasing attention from academia and industry.
We propose FedDM to build the global training objective from multiple local surrogate functions.
In detail, we construct synthetic sets of data on each client to locally match the loss landscape from original data.
arXiv Detail & Related papers (2022-07-20T04:55:18Z) - Acceleration of Federated Learning with Alleviated Forgetting in Local
Training [61.231021417674235]
Federated learning (FL) enables distributed optimization of machine learning models while protecting privacy.
We propose FedReg, an algorithm to accelerate FL with alleviated knowledge forgetting in the local training stage.
Our experiments demonstrate that FedReg not only significantly improves the convergence rate of FL, especially when the neural network architecture is deep.
arXiv Detail & Related papers (2022-03-05T02:31:32Z) - No One Left Behind: Inclusive Federated Learning over Heterogeneous
Devices [79.16481453598266]
We propose InclusiveFL, a client-inclusive federated learning method to handle this problem.
The core idea of InclusiveFL is to assign models of different sizes to clients with different computing capabilities.
We also propose an effective method to share the knowledge among multiple local models with different sizes.
arXiv Detail & Related papers (2022-02-16T13:03:27Z) - Do Gradient Inversion Attacks Make Federated Learning Unsafe? [70.0231254112197]
Federated learning (FL) allows the collaborative training of AI models without needing to share raw data.
Recent works on the inversion of deep neural networks from model gradients raised concerns about the security of FL in preventing the leakage of training data.
In this work, we show that these attacks presented in the literature are impractical in real FL use-cases and provide a new baseline attack.
arXiv Detail & Related papers (2022-02-14T18:33:12Z) - Blockchain Assisted Decentralized Federated Learning (BLADE-FL):
Performance Analysis and Resource Allocation [119.19061102064497]
We propose a decentralized FL framework by integrating blockchain into FL, namely, blockchain assisted decentralized federated learning (BLADE-FL)
In a round of the proposed BLADE-FL, each client broadcasts its trained model to other clients, competes to generate a block based on the received models, and then aggregates the models from the generated block before its local training of the next round.
We explore the impact of lazy clients on the learning performance of BLADE-FL, and characterize the relationship among the optimal K, the learning parameters, and the proportion of lazy clients.
arXiv Detail & Related papers (2021-01-18T07:19:08Z) - FLaPS: Federated Learning and Privately Scaling [3.618133010429131]
Federated learning (FL) is a distributed learning process where the model is transferred to the devices that posses data.
We present Federated Learning and Privately Scaling (FLaPS) architecture, which improves scalability as well as the security and privacy of the system.
arXiv Detail & Related papers (2020-09-13T14:20:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.