論文の概要: Abn-BLIP: Abnormality-aligned Bootstrapping Language-Image Pre-training for Pulmonary Embolism Diagnosis and Report Generation from CTPA
- arxiv url: http://arxiv.org/abs/2503.02034v1
- Date: Mon, 03 Mar 2025 20:13:39 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-05 19:24:05.029952
- Title: Abn-BLIP: Abnormality-aligned Bootstrapping Language-Image Pre-training for Pulmonary Embolism Diagnosis and Report Generation from CTPA
- Title(参考訳): Abn-BLIP:異常整合型ブートストラップ言語画像による肺塞栓症の診断とCTPAからの報告
- Authors: Zhusi Zhong, Yuli Wang, Lulu Bi, Zhuoqi Ma, Sun Ho Ahn, Christopher J. Mullin, Colin F. Greineder, Michael K. Atalay, Scott Collins, Grayson L. Baird, Cheng Ting Lin, Webster Stayman, Todd M. Kolb, Ihab Kamel, Harrison X. Bai, Zhicheng Jiao,
- Abstract要約: Abn-BLIPは放射線診断の精度と包括性を生成するために異常所見の整合を図った高度な診断モデルである。
以上の結果から,Abn-BLIPは最先端の医療ビジョン言語モデルおよび3Dレポート生成手法よりも精度および臨床関連性が高いことがわかった。
- 参考スコア(独自算出の注目度): 3.1001390303501153
- License:
- Abstract: Medical imaging plays a pivotal role in modern healthcare, with computed tomography pulmonary angiography (CTPA) being a critical tool for diagnosing pulmonary embolism and other thoracic conditions. However, the complexity of interpreting CTPA scans and generating accurate radiology reports remains a significant challenge. This paper introduces Abn-BLIP (Abnormality-aligned Bootstrapping Language-Image Pretraining), an advanced diagnosis model designed to align abnormal findings to generate the accuracy and comprehensiveness of radiology reports. By leveraging learnable queries and cross-modal attention mechanisms, our model demonstrates superior performance in detecting abnormalities, reducing missed findings, and generating structured reports compared to existing methods. Our experiments show that Abn-BLIP outperforms state-of-the-art medical vision-language models and 3D report generation methods in both accuracy and clinical relevance. These results highlight the potential of integrating multimodal learning strategies for improving radiology reporting. The source code is available at https://github.com/zzs95/abn-blip.
- Abstract(参考訳): CTPA(CTPA)は肺塞栓症などの胸腔疾患を診断するための重要なツールである。
しかしCTPAスキャンの解釈と正確な放射線診断レポートの作成の複雑さは依然として大きな課題である。
本稿では,異常所見を一致させて放射線診断レポートの精度と包括性を生成するための高度な診断モデルであるAbn-BLIPについて紹介する。
学習可能なクエリとクロスモーダルなアテンション機構を活用することで,既存の手法と比較して,異常の検出,発見の欠落の低減,構造化レポートの生成に優れた性能を示す。
以上の結果から,Abn-BLIPは最先端の医療ビジョン言語モデルおよび3Dレポート生成手法よりも精度および臨床関連性が高いことがわかった。
これらの結果は,放射線学レポート改善のためのマルチモーダル学習戦略の統合の可能性を強調した。
ソースコードはhttps://github.com/zzs95/abn-blip.comで入手できる。
関連論文リスト
- Multilabel Classification for Lung Disease Detection: Integrating Deep Learning and Natural Language Processing [0.0]
本稿では,多ラベル肺疾患分類のためのトランスファーラーニングモデルを提案する。
提案モデルはF1スコア0.69、AUROC0.86を達成し、臨床応用の可能性を示した。
論文 参考訳(メタデータ) (2024-12-16T05:14:08Z) - TRRG: Towards Truthful Radiology Report Generation With Cross-modal Disease Clue Enhanced Large Language Model [22.305034251561835]
そこで我々は,大規模言語モデルへのクロスモーダル病ヒントインジェクションの段階的訓練に基づく,真正な放射線学レポート生成フレームワークTRRGを提案する。
提案フレームワークは,IU-XrayやMIMIC-CXRなどのデータセットを用いた放射線学レポート生成において,最先端の性能を実現する。
論文 参考訳(メタデータ) (2024-08-22T05:52:27Z) - RadBARTsum: Domain Specific Adaption of Denoising Sequence-to-Sequence Models for Abstractive Radiology Report Summarization [1.8450534779202723]
本研究では,抽象的放射線学レポート要約のためのドメイン固有かつ容易なBARTモデルの適応であるRadBARTsumを提案する。
本手法は,1)生物医学領域の知識学習を改善するための新しい実体マスキング戦略を用いて,放射線学報告の大規模コーパス上でBARTモデルを再学習すること,2)印象区間を予測するためにFindersとバックグラウンドセクションを用いて要約タスクのモデルを微調整すること,の2つの段階を含む。
論文 参考訳(メタデータ) (2024-06-05T08:43:11Z) - Radiology Report Generation Using Transformers Conditioned with
Non-imaging Data [55.17268696112258]
本稿では,胸部X線画像と関連する患者の人口統計情報を統合したマルチモーダルトランスフォーマーネットワークを提案する。
提案ネットワークは、畳み込みニューラルネットワークを用いて、CXRから視覚的特徴を抽出し、その視覚的特徴と患者の人口統計情報のセマンティックテキスト埋め込みを組み合わせたトランスフォーマーベースのエンコーダデコーダネットワークである。
論文 参考訳(メタデータ) (2023-11-18T14:52:26Z) - ChatRadio-Valuer: A Chat Large Language Model for Generalizable
Radiology Report Generation Based on Multi-institution and Multi-system Data [115.0747462486285]
ChatRadio-Valuerは、一般化可能な表現を学習する自動放射線学レポート生成のための調整されたモデルである。
本研究で利用した臨床データセットは,textbf332,673の顕著な総計を含む。
ChatRadio-Valuerは、最先端のモデル、特にChatGPT(GPT-3.5-Turbo)やGPT-4などより一貫して優れている。
論文 参考訳(メタデータ) (2023-10-08T17:23:17Z) - Cross-Modal Causal Intervention for Medical Report Generation [109.83549148448469]
医療報告生成(MRG)は、コンピュータ支援診断と治療指導に不可欠である。
視覚的および言語的バイアスによって引き起こされる画像テキストデータ内の素早い相関のため、病変領域を確実に記述した正確なレポートを生成することは困難である。
本稿では,視覚分解モジュール (VDM) と言語分解モジュール (LDM) からなるMRGのための新しい視覚言語因果干渉 (VLCI) フレームワークを提案する。
論文 参考訳(メタデータ) (2023-03-16T07:23:55Z) - Medical Image Captioning via Generative Pretrained Transformers [57.308920993032274]
我々は、Show-Attend-Tell と GPT-3 という2つの言語モデルを組み合わせて、包括的で記述的な放射線学記録を生成する。
提案モデルは、Open-I、MIMIC-CXR、汎用MS-COCOの2つの医療データセットで検証される。
論文 参考訳(メタデータ) (2022-09-28T10:27:10Z) - MMLN: Leveraging Domain Knowledge for Multimodal Diagnosis [10.133715767542386]
肺疾患診断のための知識駆動型およびデータ駆動型フレームワークを提案する。
本研究は, 臨床医学ガイドラインに従って診断規則を定式化し, テキストデータから規則の重みを学習する。
テキストと画像データからなるマルチモーダル融合は、肺疾患の限界確率を推定するために設計されている。
論文 参考訳(メタデータ) (2022-02-09T04:12:30Z) - BI-RADS-Net: An Explainable Multitask Learning Approach for Cancer
Diagnosis in Breast Ultrasound Images [69.41441138140895]
本稿では,乳房超音波画像における癌検出のための新しい深層学習手法であるBI-RADS-Netを紹介する。
提案手法は, 臨床診断に関連する特徴表現を学習することにより, 乳腺腫瘍の説明と分類を行うタスクを取り入れたものである。
臨床医が医療現場で診断・報告するために使用する形態学的特徴の観点から予測(良性または悪性)の説明が提供される。
論文 参考訳(メタデータ) (2021-10-05T19:14:46Z) - CoRSAI: A System for Robust Interpretation of CT Scans of COVID-19
Patients Using Deep Learning [133.87426554801252]
我々は,深部畳み込み神経網のアンサンブルを用いた肺CTスキャンのセグメンテーションによるアプローチを採用した。
本モデルを用いて, 病変の分類, 患者の動態の評価, 病変による肺の相対体積の推定, 肺の損傷ステージの評価が可能となった。
論文 参考訳(メタデータ) (2021-05-25T12:06:55Z) - Joint Modeling of Chest Radiographs and Radiology Reports for Pulmonary
Edema Assessment [39.60171837961607]
我々は,胸部X線写真から肺浮腫の重症度を評価するために,画像と自由テキストの両方で訓練されたニューラルネットワークモデルを開発した。
実験結果から,共同画像・テキスト表現学習は肺浮腫評価の性能を向上させることが示唆された。
論文 参考訳(メタデータ) (2020-08-22T17:28:39Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。