論文の概要: Building Machine Learning Challenges for Anomaly Detection in Science
- arxiv url: http://arxiv.org/abs/2503.02112v1
- Date: Mon, 03 Mar 2025 22:54:07 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-05 19:14:04.637169
- Title: Building Machine Learning Challenges for Anomaly Detection in Science
- Title(参考訳): 科学における異常検出のための機械学習の課題
- Authors: Elizabeth G. Campolongo, Yuan-Tang Chou, Ekaterina Govorkova, Wahid Bhimji, Wei-Lun Chao, Chris Harris, Shih-Chieh Hsu, Hilmar Lapp, Mark S. Neubauer, Josephine Namayanja, Aneesh Subramanian, Philip Harris, Advaith Anand, David E. Carlyn, Subhankar Ghosh, Christopher Lawrence, Eric Moreno, Ryan Raikman, Jiaman Wu, Ziheng Zhang, Bayu Adhi, Mohammad Ahmadi Gharehtoragh, Saúl Alonso Monsalve, Marta Babicz, Furqan Baig, Namrata Banerji, William Bardon, Tyler Barna, Tanya Berger-Wolf, Adji Bousso Dieng, Micah Brachman, Quentin Buat, David C. Y. Hui, Phuong Cao, Franco Cerino, Yi-Chun Chang, Shivaji Chaulagain, An-Kai Chen, Deming Chen, Eric Chen, Chia-Jui Chou, Zih-Chen Ciou, Miles Cochran-Branson, Artur Cordeiro Oudot Choi, Michael Coughlin, Matteo Cremonesi, Maria Dadarlat, Peter Darch, Malina Desai, Daniel Diaz, Steven Dillmann, Javier Duarte, Isla Duporge, Urbas Ekka, Saba Entezari Heravi, Hao Fang, Rian Flynn, Geoffrey Fox, Emily Freed, Hang Gao, Jing Gao, Julia Gonski, Matthew Graham, Abolfazl Hashemi, Scott Hauck, James Hazelden, Joshua Henry Peterson, Duc Hoang, Wei Hu, Mirco Huennefeld, David Hyde, Vandana Janeja, Nattapon Jaroenchai, Haoyi Jia, Yunfan Kang, Maksim Kholiavchenko, Elham E. Khoda, Sangin Kim, Aditya Kumar, Bo-Cheng Lai, Trung Le, Chi-Wei Lee, JangHyeon Lee, Shaocheng Lee, Suzan van der Lee, Charles Lewis, Haitong Li, Haoyang Li, Henry Liao, Mia Liu, Xiaolin Liu, Xiulong Liu, Vladimir Loncar, Fangzheng Lyu, Ilya Makarov, Abhishikth Mallampalli Chen-Yu Mao, Alexander Michels, Alexander Migala, Farouk Mokhtar, Mathieu Morlighem, Min Namgung, Andrzej Novak, Andrew Novick, Amy Orsborn, Anand Padmanabhan, Jia-Cheng Pan, Sneh Pandya, Zhiyuan Pei, Ana Peixoto, George Percivall, Alex Po Leung, Sanjay Purushotham, Zhiqiang Que, Melissa Quinnan, Arghya Ranjan, Dylan Rankin, Christina Reissel, Benedikt Riedel, Dan Rubenstein, Argyro Sasli, Eli Shlizerman, Arushi Singh, Kim Singh, Eric R. Sokol, Arturo Sorensen, Yu Su, Mitra Taheri, Vaibhav Thakkar, Ann Mariam Thomas, Eric Toberer, Chenghan Tsai, Rebecca Vandewalle, Arjun Verma, Ricco C. Venterea, He Wang, Jianwu Wang, Sam Wang, Shaowen Wang, Gordon Watts, Jason Weitz, Andrew Wildridge, Rebecca Williams, Scott Wolf, Yue Xu, Jianqi Yan, Jai Yu, Yulei Zhang, Haoran Zhao, Ying Zhao, Yibo Zhong,
- Abstract要約: 本稿では,異なる科学領域を対象とした機械学習による異常検出を目的とした3つのデータセットを提案する。
3つのデータセットを検索可能、アクセス可能、相互運用可能、再利用可能なものにするために、機械学習の課題を提起する。
- 参考スコア(独自算出の注目度): 94.24422981343699
- License:
- Abstract: Scientific discoveries are often made by finding a pattern or object that was not predicted by the known rules of science. Oftentimes, these anomalous events or objects that do not conform to the norms are an indication that the rules of science governing the data are incomplete, and something new needs to be present to explain these unexpected outliers. The challenge of finding anomalies can be confounding since it requires codifying a complete knowledge of the known scientific behaviors and then projecting these known behaviors on the data to look for deviations. When utilizing machine learning, this presents a particular challenge since we require that the model not only understands scientific data perfectly but also recognizes when the data is inconsistent and out of the scope of its trained behavior. In this paper, we present three datasets aimed at developing machine learning-based anomaly detection for disparate scientific domains covering astrophysics, genomics, and polar science. We present the different datasets along with a scheme to make machine learning challenges around the three datasets findable, accessible, interoperable, and reusable (FAIR). Furthermore, we present an approach that generalizes to future machine learning challenges, enabling the possibility of large, more compute-intensive challenges that can ultimately lead to scientific discovery.
- Abstract(参考訳): 科学的発見は、しばしば、既知の科学の規則によって予測されなかったパターンや物体を見つけることによって行われる。
しばしば、この規範に従わない異常な出来事やオブジェクトは、データを管理する科学の規則が不完全であることを示すものであり、これらの予期せぬ外れ値を説明するために新しいものが存在する必要がある。
異常を見つけるという課題は、既知の科学的行動の完全な知識を体系化し、これらの既知の振る舞いをデータに投影して逸脱を探す必要があるため、誤解を招く可能性がある。
機械学習を利用する場合、このモデルは科学的データを完璧に理解するだけでなく、データが一貫性がなく、訓練された振る舞いの範囲外にあることを認識する必要があるため、これは特に課題となる。
本稿では,天体物理学,ゲノミクス,極地科学を対象とする異種科学領域を対象とした,機械学習による異常検出のための3つのデータセットを提案する。
異なるデータセットと、検出可能、アクセス可能、相互運用可能、再利用可能な3つのデータセット(FAIR)に関する機械学習の課題を解決するためのスキームを提示します。
さらに、将来の機械学習課題に一般化し、最終的に科学的発見につながる、大規模で計算集約的な課題の可能性を実現するアプローチを提案する。
関連論文リスト
- Causal machine learning for single-cell genomics [94.28105176231739]
単細胞ゲノミクスへの機械学習技術の応用とその課題について論じる。
まず, 単一細胞生物学における現在の因果的アプローチの基盤となるモデルについて述べる。
次に、単一セルデータへの因果的アプローチの適用におけるオープンな問題を特定する。
論文 参考訳(メタデータ) (2023-10-23T13:35:24Z) - Interpretable Machine Learning for Discovery: Statistical Challenges \&
Opportunities [1.2891210250935146]
我々は、解釈可能な機械学習の分野について議論し、レビューする。
解釈可能な機械学習を用いて行うことができる発見の種類について概説する。
我々は、これらの発見をデータ駆動方式でどのように検証するかという大きな課題に焦点をあてる。
論文 参考訳(メタデータ) (2023-08-02T23:57:31Z) - Discovering Causal Relations and Equations from Data [23.802778299505288]
本稿では、物理学の幅広い分野における因果関係と方程式発見に関する概念、方法、および関連する研究について概説する。
我々は、観察因果関係と方程式発見のための分類法を提供し、接続を指摘し、ケーススタディの完全なセットを示します。
興奮する時間は、複雑なシステムに対する理解を改善するための多くの課題と機会に先立ちます。
論文 参考訳(メタデータ) (2023-05-21T19:22:50Z) - GFlowNets for AI-Driven Scientific Discovery [74.27219800878304]
我々はGFlowNetsと呼ばれる新しい確率論的機械学習フレームワークを提案する。
GFlowNetsは、実験科学ループのモデリング、仮説生成、実験的な設計段階に適用できる。
我々は、GFlowNetsがAIによる科学的発見の貴重なツールになり得ると論じている。
論文 参考訳(メタデータ) (2023-02-01T17:29:43Z) - Deep Learning for Time Series Anomaly Detection: A Survey [53.83593870825628]
時系列異常検出は、製造業や医療を含む幅広い研究分野や応用に応用されている。
時系列の大規模かつ複雑なパターンにより、研究者は異常パターンを検出するための特別な深層学習モデルを開発するようになった。
本調査は,ディープラーニングを用いた構造化および総合的時系列異常検出モデルの提供に焦点を当てる。
論文 参考訳(メタデータ) (2022-11-09T22:40:22Z) - Bridging Machine Learning and Sciences: Opportunities and Challenges [0.0]
機械学習の科学への応用は、近年、エキサイティングな進歩を遂げている。
近年,ディープ・ニューラルネットを用いたアウト・オブ・ディストリビューション検出は高次元データにおいて大きな進歩を遂げている。
我々は、データ普遍性、実験プロトコル、モデル堅牢性など、それらの適用可能性について批判的に考察する。
論文 参考訳(メタデータ) (2022-10-24T17:54:46Z) - Learning from learning machines: a new generation of AI technology to
meet the needs of science [59.261050918992325]
科学的な発見のためのAIの有用性を高めるための新たな機会と課題を概説する。
産業におけるAIの目標と科学におけるAIの目標の区別は、データ内のパターンを識別することと、データから世界のパターンを発見することとの間に緊張を生じさせる。
論文 参考訳(メタデータ) (2021-11-27T00:55:21Z) - A Comprehensive Survey on Graph Anomaly Detection with Deep Learning [37.83120827837028]
異常は稀な観測(例えば、データ記録や出来事)であり、他のものとは大きく異なる。
本研究では,グラフ異常検出のための現代のディープラーニング技術について,体系的かつ包括的にレビューすることを目的とする。
論文 参考訳(メタデータ) (2021-06-14T06:04:57Z) - Data Science: Challenges and Directions [42.98602883069444]
データサイエンスのタイトルを含む何百もの文献をレビューする。
議論の大部分は、統計、データマイニング、機械学習、ビッグデータ、あるいは広範なデータ分析に関するものだと考えています。
我々は、複雑なシステムとしてのデータサイエンス問題の性質にインスパイアされた研究とイノベーションの課題に焦点を当てる。
論文 参考訳(メタデータ) (2020-06-28T01:49:00Z) - Exploratory Machine Learning with Unknown Unknowns [60.78953456742171]
本稿では,他のラベルと誤認識されたトレーニングデータに未知のクラスが存在するという,新たな問題設定について検討する。
本研究では,潜在的に隠蔽されたクラスを発見するために,機能空間を積極的に拡張することにより,学習データを調べ,調査する探索機械学習を提案する。
論文 参考訳(メタデータ) (2020-02-05T02:06:56Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。