論文の概要: Frankenstein Optimizer: Harnessing the Potential by Revisiting Optimization Tricks
- arxiv url: http://arxiv.org/abs/2503.02147v1
- Date: Tue, 04 Mar 2025 00:25:54 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-05 19:16:26.413273
- Title: Frankenstein Optimizer: Harnessing the Potential by Revisiting Optimization Tricks
- Title(参考訳): Frankenstein Optimizer:最適化トリックの再検討による可能性のハーネス化
- Authors: Chia-Wei Hsu, Nien-Ti Tsou, Yu-Cheng Chen, Yang Jeong Park, Ju Li,
- Abstract要約: 様々な適応アルゴリズムの機構を組み合わせたフランケンシュタインを提案する。
我々は、フランケンシュタインが既存の適応アルゴリズムと勾配降下(SGD)を超えることを示す。
本研究では,学習過程におけるカーネルアライメント解析とロスランドスケープの可視化を通じて,適応アルゴリズムの理解を深める。
- 参考スコア(独自算出の注目度): 2.932254642052481
- License:
- Abstract: Gradient-based optimization drives the unprecedented performance of modern deep neural network models across diverse applications. Adaptive algorithms have accelerated neural network training due to their rapid convergence rates; however, they struggle to find ``flat minima" reliably, resulting in suboptimal generalization compared to stochastic gradient descent (SGD). By revisiting various adaptive algorithms' mechanisms, we propose the Frankenstein optimizer, which combines their advantages. The proposed Frankenstein dynamically adjusts first- and second-momentum coefficients according to the optimizer's current state to directly maintain consistent learning dynamics and immediately reflect sudden gradient changes. Extensive experiments across several research domains such as computer vision, natural language processing, few-shot learning, and scientific simulations show that Frankenstein surpasses existing adaptive algorithms and SGD empirically regarding convergence speed and generalization performance. Furthermore, this research deepens our understanding of adaptive algorithms through centered kernel alignment analysis and loss landscape visualization during the learning process.
- Abstract(参考訳): グラディエントベースの最適化は、多様なアプリケーションにわたる現代のディープニューラルネットワークモデルの前例のないパフォーマンスを駆動する。
アダプティブアルゴリズムは、その急速な収束率のためにニューラルネットワークのトレーニングを加速してきたが、彼らは 'flat minima' を確実に見つけるのに苦労し、確率的勾配降下 (SGD) と比較して準最適一般化をもたらす。
各種適応アルゴリズムの機構を再検討することにより,その利点を組み合わせたフランケンシュタイン最適化手法を提案する。
提案したフランケンシュタインは、オプティマイザの現在の状態に応じて第1および第2モーメント係数を動的に調整し、一貫した学習ダイナミクスを直接維持し、突然の勾配変化を即座に反映する。
コンピュータビジョン、自然言語処理、少数ショット学習、科学シミュレーションなど、いくつかの研究領域にわたる広範な実験は、フランケンシュタインが既存の適応アルゴリズムやSGDを抜いて収束速度と一般化性能を実証的に上回っていることを示している。
さらに,本研究では,学習過程におけるカーネルアライメント解析とロスランドスケープの可視化を通じて,適応アルゴリズムの理解を深める。
関連論文リスト
- Enhancing CNN Classification with Lamarckian Memetic Algorithms and Local Search [0.0]
そこで本研究では,局所探索機能を組み込んだ2段階学習手法と集団最適化アルゴリズムを併用した新しい手法を提案する。
実験の結果,提案手法は最先端の勾配に基づく手法よりも優れていた。
論文 参考訳(メタデータ) (2024-10-26T17:31:15Z) - An Automatic Learning Rate Schedule Algorithm for Achieving Faster
Convergence and Steeper Descent [10.061799286306163]
実世界のニューラルネットワーク最適化におけるデルタバーデルタアルゴリズムの収束挙動について検討する。
RDBD(Regrettable Delta-Bar-Delta)と呼ばれる新しい手法を提案する。
提案手法は,バイアス付き学習率調整の迅速な修正を可能にし,最適化プロセスの収束を保証する。
論文 参考訳(メタデータ) (2023-10-17T14:15:57Z) - Towards Theoretically Inspired Neural Initialization Optimization [66.04735385415427]
我々は,ニューラルネットワークの初期状態を評価するための理論的知見を備えた,GradCosineという微分可能な量を提案する。
標準制約下でGradCosineを最大化することにより、ネットワークのトレーニングとテストの両方の性能を向上させることができることを示す。
サンプル分析から実際のバッチ設定に一般化されたNIOは、無視可能なコストで、より優れた初期化を自動で探すことができる。
論文 参考訳(メタデータ) (2022-10-12T06:49:16Z) - SUPER-ADAM: Faster and Universal Framework of Adaptive Gradients [99.13839450032408]
一般的な問題を解決するための適応アルゴリズムのための普遍的な枠組みを設計することが望まれる。
特に,本フレームワークは,非収束的設定支援の下で適応的手法を提供する。
論文 参考訳(メタデータ) (2021-06-15T15:16:28Z) - Meta-Regularization: An Approach to Adaptive Choice of the Learning Rate
in Gradient Descent [20.47598828422897]
第一次下降法における学習率の適応的選択のための新しいアプローチであるtextit-Meta-Regularizationを提案する。
本手法は,正規化項を追加して目的関数を修正し,共同処理パラメータをキャストする。
論文 参考訳(メタデータ) (2021-04-12T13:13:34Z) - A Dynamical View on Optimization Algorithms of Overparameterized Neural
Networks [23.038631072178735]
我々は、一般的に使用される最適化アルゴリズムの幅広いクラスについて考察する。
その結果、ニューラルネットワークの収束挙動を利用することができる。
このアプローチは他の最適化アルゴリズムやネットワーク理論にも拡張できると考えています。
論文 参考訳(メタデータ) (2020-10-25T17:10:22Z) - Adaptive Gradient Method with Resilience and Momentum [120.83046824742455]
レジリエンスとモメンタム(AdaRem)を用いた適応勾配法を提案する。
AdaRemは、過去の1つのパラメータの変化方向が現在の勾配の方向と一致しているかどうかに応じてパラメータワイズ学習率を調整する。
本手法は,学習速度とテスト誤差の観点から,従来の適応学習率に基づくアルゴリズムよりも優れていた。
論文 参考訳(メタデータ) (2020-10-21T14:49:00Z) - Communication-Efficient Distributed Stochastic AUC Maximization with
Deep Neural Networks [50.42141893913188]
本稿では,ニューラルネットワークを用いた大規模AUCのための分散変数について検討する。
我々のモデルは通信ラウンドをはるかに少なくし、理論上はまだ多くの通信ラウンドを必要としています。
いくつかのデータセットに対する実験は、我々の理論の有効性を示し、我々の理論を裏付けるものである。
論文 参考訳(メタデータ) (2020-05-05T18:08:23Z) - Learning to be Global Optimizer [28.88646928299302]
いくつかのベンチマーク関数に対して最適なネットワークとエスケープ能力アルゴリズムを学習する。
学習したアルゴリズムは、よく知られた古典最適化アルゴリズムよりも大幅に優れていることを示す。
論文 参考訳(メタデータ) (2020-03-10T03:46:25Z) - Large Batch Training Does Not Need Warmup [111.07680619360528]
大きなバッチサイズを使用してディープニューラルネットワークをトレーニングすることは、有望な結果を示し、多くの現実世界のアプリケーションに利益をもたらしている。
本稿では,大規模バッチ学習のための全層適応レートスケーリング(CLARS)アルゴリズムを提案する。
分析に基づいて,このギャップを埋め,3つの一般的な大規模バッチトレーニング手法の理論的洞察を提示する。
論文 参考訳(メタデータ) (2020-02-04T23:03:12Z) - Towards Better Understanding of Adaptive Gradient Algorithms in
Generative Adversarial Nets [71.05306664267832]
適応アルゴリズムは勾配の歴史を用いて勾配を更新し、深層ニューラルネットワークのトレーニングにおいてユビキタスである。
本稿では,非コンケーブ最小値問題に対するOptimisticOAアルゴリズムの変種を解析する。
実験の結果,適応型GAN非適応勾配アルゴリズムは経験的に観測可能であることがわかった。
論文 参考訳(メタデータ) (2019-12-26T22:10:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。