論文の概要: Incorporating graph neural network into route choice model
- arxiv url: http://arxiv.org/abs/2503.02315v1
- Date: Tue, 04 Mar 2025 06:16:55 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-05 19:16:23.117612
- Title: Incorporating graph neural network into route choice model
- Title(参考訳): 経路選択モデルへのグラフニューラルネットワークの導入
- Authors: Yuxun Ma, Toru Seo,
- Abstract要約: 本稿では,グラフニューラルネットワーク(GNN)に再帰ロジットモデルを統合するハイブリッドモデルを提案する。
数学的には、GNNの使用は予測性能の向上だけでなく、非関連代替資産の独立を緩和する上で有益であることを示す。
- 参考スコア(独自算出の注目度): 2.07180164747172
- License:
- Abstract: Route choice models are one of the most important foundations for transportation research. Traditionally, theory-based models have been utilized for their great interpretability, such as logit models and Recursive logit models. More recently, machine learning approaches have gained attentions for their better prediction accuracy. In this study, we propose novel hybrid models that integrate the Recursive logit model with Graph Neural Networks (GNNs) to enhance both predictive performance and model interpretability. To the authors' knowldedge, GNNs have not been utilized for route choice modeling, despite their proven effectiveness in capturing road network features and their widespread use in other transportation research areas. We mathematically show that our use of GNN is not only beneficial for enhancing the prediction performance, but also relaxing the Independence of Irrelevant Alternatives property without relying on strong assumptions. This is due to the fact that a specific type of GNN can efficiently capture multiple cross-effect patterns on networks from data. By applying the proposed models to one-day travel trajectory data in Tokyo, we confirmed their higher prediction accuracy compared to the existing models.
- Abstract(参考訳): 経路選択モデルは交通研究の最も重要な基盤の1つである。
伝統的に、理論に基づくモデルは、ロジットモデルや再帰ロジットモデルのような大きな解釈可能性のために利用されてきた。
最近では、予測精度の向上のために機械学習アプローチが注目されている。
本研究では,グラフニューラルネットワーク(GNN)に再帰ロジットモデルを統合するハイブリッドモデルを提案する。
著者らにとって、GNNは道路網の特徴を捉え、他の交通機関で広く利用されているにもかかわらず、経路選択モデリングには使われていない。
数学的には、GNNの使用は予測性能を高めるのに有用であるだけでなく、強い仮定を頼らずに非関連代替資産の独立を緩和することも示している。
これは、特定のタイプのGNNがデータからネットワーク上の複数の相互効果パターンを効率的にキャプチャできるためである。
提案したモデルを東京の1日間の旅行軌跡データに適用することにより,既存のモデルと比較して高い予測精度を確認した。
関連論文リスト
- GOODAT: Towards Test-time Graph Out-of-Distribution Detection [103.40396427724667]
グラフニューラルネットワーク(GNN)は、さまざまな領域にわたるグラフデータのモデリングに広く応用されている。
近年の研究では、特定のモデルのトレーニングや、よく訓練されたGNN上でのデータ修正に重点を置いて、OOD検出のグラフを調査している。
本稿では、GNNアーキテクチャのトレーニングデータと修正から独立して動作する、データ中心、教師なし、プラグアンドプレイのソリューションを提案する。
論文 参考訳(メタデータ) (2024-01-10T08:37:39Z) - Visual Prompting Upgrades Neural Network Sparsification: A Data-Model Perspective [64.04617968947697]
より優れた重量空間を実現するために、新しいデータモデル共設計視点を導入する。
具体的には、提案したVPNフレームワークでニューラルネットワークのスパーシフィケーションをアップグレードするために、カスタマイズされたVisual Promptが実装されている。
論文 参考訳(メタデータ) (2023-12-03T13:50:24Z) - Revisiting Random Forests in a Comparative Evaluation of Graph
Convolutional Neural Network Variants for Traffic Prediction [15.248412426672694]
グラフ畳み込みニューラルネットワーク(GCNN)が交通予測の文献において主流となっている。
本稿では,GCNN予測モデルの成功要素を分類し,その性能に及ぼす因子化,注意機構,体重共有の影響を解析する。
論文 参考訳(メタデータ) (2023-05-30T00:50:51Z) - Attention-based Spatial-Temporal Graph Neural ODE for Traffic Prediction [3.4806267677524896]
本稿では,交通システムの力学を明示的に学習するアテンションベースグラフニューラルODE(AST)を提案する。
本モデルでは,異なる期間のトラフィックパターンを集約し,実世界の2つのトラフィックデータセットに対して良好な性能を示す。
論文 参考訳(メタデータ) (2023-05-01T00:58:48Z) - GrOVe: Ownership Verification of Graph Neural Networks using Embeddings [13.28269672097063]
グラフニューラルネットワーク(GNN)は、大規模グラフ構造化データから推論をモデル化および描画するための最先端のアプローチとして登場した。
以前の研究によると、GNNは抽出攻撃をモデル化する傾向がある。
GrOVeは最先端のGNNモデルフィンガープリント方式である。
論文 参考訳(メタデータ) (2023-04-17T19:06:56Z) - Revisiting Embeddings for Graph Neural Networks [0.0]
画像とテキストの両方に対して異なる埋め込み抽出手法を探索する。
埋め込みの選択は異なるGNNアーキテクチャの性能に偏っていることがわかった。
本稿では,グラフ接続型ネットワーク(GraNet)層を提案する。
論文 参考訳(メタデータ) (2022-09-19T20:37:55Z) - EIGNN: Efficient Infinite-Depth Graph Neural Networks [51.97361378423152]
グラフニューラルネットワーク(GNN)は多くのアプリケーションでグラフ構造化データのモデリングに広く利用されている。
この制限により、無限深度GNNモデルを提案し、これをEIGNN(Efficient Infinite-Depth Graph Neural Networks)と呼ぶ。
EIGNNは、最近のベースラインよりも長距離依存関係をキャプチャする能力が優れており、常に最先端のパフォーマンスを実現していることを示す。
論文 参考訳(メタデータ) (2022-02-22T08:16:58Z) - Discovering Invariant Rationales for Graph Neural Networks [104.61908788639052]
グラフニューラルネットワーク(GNN)の固有の解釈可能性とは、入力グラフの特徴の小さなサブセットを見つけることである。
本稿では,本質的に解釈可能なGNNを構築するために,不変理性(DIR)を発見するための新しい戦略を提案する。
論文 参考訳(メタデータ) (2022-01-30T16:43:40Z) - A Comparative Study on Basic Elements of Deep Learning Models for
Spatial-Temporal Traffic Forecasting [0.0]
交通予報はインテリジェント交通システムにおいて重要な役割を担っている。
最近提案されたディープラーニングモデルは、グラフ畳み込み、グラフアテンション、リカレントユニット、/またはアテンションメカニズムといった基本的な要素を共有している。
本研究では,異なる基本要素を利用する4つのディープニューラルネットワークモデルについて,詳細な比較研究を設計した。
論文 参考訳(メタデータ) (2021-11-15T03:20:23Z) - ANNETTE: Accurate Neural Network Execution Time Estimation with Stacked
Models [56.21470608621633]
本稿では,アーキテクチャ検索を対象ハードウェアから切り離すための時間推定フレームワークを提案する。
提案手法は,マイクロカーネルと多層ベンチマークからモデルの集合を抽出し,マッピングとネットワーク実行時間推定のためのスタックモデルを生成する。
生成した混合モデルの推定精度と忠実度, 統計モデルとルーフラインモデル, 評価のための洗練されたルーフラインモデルを比較した。
論文 参考訳(メタデータ) (2021-05-07T11:39:05Z) - Interpreting Graph Neural Networks for NLP With Differentiable Edge
Masking [63.49779304362376]
グラフニューラルネットワーク(GNN)は、構造的帰納バイアスをNLPモデルに統合する一般的なアプローチとなっている。
本稿では,不要なエッジを識別するGNNの予測を解釈するポストホック手法を提案する。
モデルの性能を劣化させることなく,多数のエッジを落とせることを示す。
論文 参考訳(メタデータ) (2020-10-01T17:51:19Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。