論文の概要: Revisiting Embeddings for Graph Neural Networks
- arxiv url: http://arxiv.org/abs/2209.09338v2
- Date: Wed, 21 Sep 2022 10:22:53 GMT
- ステータス: 処理完了
- システム内更新日: 2022-09-22 12:33:16.458403
- Title: Revisiting Embeddings for Graph Neural Networks
- Title(参考訳): グラフニューラルネットワークのための埋め込みの再検討
- Authors: S. Purchase, A. Zhao, R. D. Mullins
- Abstract要約: 画像とテキストの両方に対して異なる埋め込み抽出手法を探索する。
埋め込みの選択は異なるGNNアーキテクチャの性能に偏っていることがわかった。
本稿では,グラフ接続型ネットワーク(GraNet)層を提案する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Current graph representation learning techniques use Graph Neural Networks
(GNNs) to extract features from dataset embeddings. In this work, we examine
the quality of these embeddings and assess how changing them can affect the
accuracy of GNNs. We explore different embedding extraction techniques for both
images and texts. We find that the choice of embedding biases the performance
of different GNN architectures and thus the choice of embedding influences the
selection of GNNs regardless of the underlying dataset. In addition, we only
see an improvement in accuracy from some GNN models compared to the accuracy of
models trained from scratch or fine-tuned on the underlying data without
utilizing the graph connections. As an alternative, we propose Graph-connected
Network (GraNet) layers which use GNN message passing within large models to
allow neighborhood aggregation. This gives a chance for the model to inherit
weights from large pre-trained models if possible and we demonstrate that this
approach improves the accuracy compared to the previous methods: on Flickr_v2,
GraNet beats GAT2 and GraphSAGE by 7.7% and 1.7% respectively.
- Abstract(参考訳): 現在のグラフ表現学習技術では、グラフニューラルネットワーク(gnns)を使用して、データセット埋め込みから特徴を抽出する。
本研究では,これらの埋め込みの質を検証し,その変化がGNNの精度に与える影響を評価する。
画像とテキストの両方に対して異なる埋め込み抽出手法を探索する。
組込みの選択は異なるGNNアーキテクチャの性能に偏りがあることがわかり、組込みの選択は基盤となるデータセットに関係なくGNNの選択に影響を及ぼす。
さらに,scratchからトレーニングしたモデルの精度や,グラフ接続を使わずに基礎となるデータで微調整されたモデルと比較して,一部のgnnモデルから精度が向上する傾向がみられた。
本稿では,グラフ接続ネットワーク(granet)層を提案する。これは大規模モデル内のgnnメッセージパッシングを用いて,近傍のアグリゲーションを可能にする。
Flickr_v2 では、GraNet が GAT2 と GraphSAGE をそれぞれ 7.7% と 1.7% で上回っている。
関連論文リスト
- Spectral Greedy Coresets for Graph Neural Networks [61.24300262316091]
ノード分類タスクにおける大規模グラフの利用は、グラフニューラルネットワーク(GNN)の現実的な応用を妨げる
本稿では,GNNのグラフコアセットについて検討し,スペクトル埋め込みに基づくエゴグラフの選択により相互依存の問題を回避する。
我々のスペクトルグレディグラフコアセット(SGGC)は、数百万のノードを持つグラフにスケールし、モデル事前学習の必要性を排除し、低ホモフィリーグラフに適用する。
論文 参考訳(メタデータ) (2024-05-27T17:52:12Z) - GOODAT: Towards Test-time Graph Out-of-Distribution Detection [103.40396427724667]
グラフニューラルネットワーク(GNN)は、さまざまな領域にわたるグラフデータのモデリングに広く応用されている。
近年の研究では、特定のモデルのトレーニングや、よく訓練されたGNN上でのデータ修正に重点を置いて、OOD検出のグラフを調査している。
本稿では、GNNアーキテクチャのトレーニングデータと修正から独立して動作する、データ中心、教師なし、プラグアンドプレイのソリューションを提案する。
論文 参考訳(メタデータ) (2024-01-10T08:37:39Z) - Measuring and Improving the Use of Graph Information in Graph Neural
Networks [38.41049128525036]
グラフニューラルネットワーク(GNN)は,グラフデータの表現学習に広く利用されている。
本稿では,グラフデータから得られる情報の量と質を測定するための2つのスムーズネス指標を提案する。
CS-GNNと呼ばれる新しいGNNモデルは、グラフの滑らかさ値に基づいてグラフ情報の利用を改善するように設計されている。
論文 参考訳(メタデータ) (2022-06-27T10:27:28Z) - Network In Graph Neural Network [9.951298152023691]
本稿では,任意のGNNモデルに対して,モデルをより深くすることでモデル容量を増大させるモデルに依存しない手法を提案する。
GNNレイヤの追加や拡張の代わりに、NGNNは、各GNNレイヤに非線形フィードフォワードニューラルネットワーク層を挿入することで、GNNモデルを深めている。
論文 参考訳(メタデータ) (2021-11-23T03:58:56Z) - A Unified Lottery Ticket Hypothesis for Graph Neural Networks [82.31087406264437]
本稿では,グラフ隣接行列とモデルの重み付けを同時に行う統一GNNスペーシフィケーション(UGS)フレームワークを提案する。
グラフ宝くじ(GLT)をコアサブデータセットとスパースサブネットワークのペアとして定義することにより、人気のある宝くじチケット仮説を初めてGNNsにさらに一般化します。
論文 参考訳(メタデータ) (2021-02-12T21:52:43Z) - Boost then Convolve: Gradient Boosting Meets Graph Neural Networks [6.888700669980625]
グラデーションブースト決定木(gbdt)は,異種データに対して他の機械学習手法よりも優れていることが示されている。
我々は,gbdt と gnn を共同で訓練し,両世界のベストを勝ち取る新しいアーキテクチャを提案する。
我々のモデルは、GNNの勾配更新に新しい木を適合させることにより、エンドツーエンドの最適化の恩恵を受ける。
論文 参考訳(メタデータ) (2021-01-21T10:46:41Z) - Scalable Graph Neural Networks for Heterogeneous Graphs [12.44278942365518]
グラフニューラルネットワーク(GNN)は、グラフ構造化データを学習するためのパラメトリックモデルの一般的なクラスである。
最近の研究は、GNNが主に機能をスムースにするためにグラフを使用しており、ベンチマークタスクで競合する結果を示していると主張している。
本研究では、これらの結果が異種グラフに拡張可能かどうかを問うとともに、異なるエンティティ間の複数のタイプの関係を符号化する。
論文 参考訳(メタデータ) (2020-11-19T06:03:35Z) - GPT-GNN: Generative Pre-Training of Graph Neural Networks [93.35945182085948]
グラフニューラルネットワーク(GNN)は、グラフ構造化データのモデリングにおいて強力であることが示されている。
生成事前学習によりGNNを初期化するためのGPT-GNNフレームワークを提案する。
GPT-GNNは、様々な下流タスクにおいて、事前トレーニングを最大9.1%行うことなく、最先端のGNNモデルを大幅に上回ることを示す。
論文 参考訳(メタデータ) (2020-06-27T20:12:33Z) - XGNN: Towards Model-Level Explanations of Graph Neural Networks [113.51160387804484]
グラフニューラルネットワーク(GNN)は、隣の情報を集約して組み合わせることでノードの特徴を学習する。
GNNはブラックボックスとして扱われ、人間の知的な説明が欠けている。
我々はモデルレベルでGNNを解釈する新しい手法 XGNN を提案する。
論文 参考訳(メタデータ) (2020-06-03T23:52:43Z) - Graphs, Convolutions, and Neural Networks: From Graph Filters to Graph
Neural Networks [183.97265247061847]
我々はグラフ信号処理を活用してグラフニューラルネットワーク(GNN)の表現空間を特徴付ける。
GNNにおけるグラフ畳み込みフィルタの役割について議論し、そのようなフィルタで構築されたアーキテクチャは、置換同値の基本的な性質と位相変化に対する安定性を持つことを示す。
また,ロボット群に対するリコメンデータシステムや分散型コントローラの学習におけるGNNの利用について検討した。
論文 参考訳(メタデータ) (2020-03-08T13:02:15Z) - Self-Enhanced GNN: Improving Graph Neural Networks Using Model Outputs [20.197085398581397]
グラフニューラルネットワーク(GNN)は最近、グラフベースのタスクにおける優れたパフォーマンスのために、多くの注目を集めている。
本稿では,既存のGNNモデルの出力を用いて,入力データの品質を向上させる自己強化型GNN(SEG)を提案する。
SEGは、GCN、GAT、SGCといったよく知られたGNNモデルのさまざまなデータセットのパフォーマンスを一貫して改善する。
論文 参考訳(メタデータ) (2020-02-18T12:27:16Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。