CQ CNN: A Hybrid Classical Quantum Convolutional Neural Network for Alzheimer's Disease Detection Using Diffusion Generated and U Net Segmented 3D MRI
- URL: http://arxiv.org/abs/2503.02345v1
- Date: Tue, 04 Mar 2025 07:08:47 GMT
- Title: CQ CNN: A Hybrid Classical Quantum Convolutional Neural Network for Alzheimer's Disease Detection Using Diffusion Generated and U Net Segmented 3D MRI
- Authors: Mominul Islam, Mohammad Junayed Hasan, M. R. C. Mahdy,
- Abstract summary: The detection of Alzheimer disease (AD) from clinical MRI data is an active area of research in medical imaging.<n>Recent advances in quantum computing offer new opportunities to develop models that may outperform traditional methods.<n>We propose an end to end hybrid classical quantum convolutional neural network (CQ CNN) for AD detection using clinically formatted 3D MRI data.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The detection of Alzheimer disease (AD) from clinical MRI data is an active area of research in medical imaging. Recent advances in quantum computing, particularly the integration of parameterized quantum circuits (PQCs) with classical machine learning architectures, offer new opportunities to develop models that may outperform traditional methods. However, quantum machine learning (QML) remains in its early stages and requires further experimental analysis to better understand its behavior and limitations. In this paper, we propose an end to end hybrid classical quantum convolutional neural network (CQ CNN) for AD detection using clinically formatted 3D MRI data. Our approach involves developing a framework to make 3D MRI data usable for machine learning, designing and training a brain tissue segmentation model (Skull Net), and training a diffusion model to generate synthetic images for the minority class. Our converged models exhibit potential quantum advantages, achieving higher accuracy in fewer epochs than classical models. The proposed beta8 3 qubit model achieves an accuracy of 97.50%, surpassing state of the art (SOTA) models while requiring significantly fewer computational resources. In particular, the architecture employs only 13K parameters (0.48 MB), reducing the parameter count by more than 99.99% compared to current SOTA models. Furthermore, the diffusion-generated data used to train our quantum models, in conjunction with real samples, preserve clinical structural standards, representing a notable first in the field of QML. We conclude that CQCNN architecture like models, with further improvements in gradient optimization techniques, could become a viable option and even a potential alternative to classical models for AD detection, especially in data limited and resource constrained clinical settings.
Related papers
- A Distributed Hybrid Quantum Convolutional Neural Network for Medical Image Classification [1.458255172453241]
We propose a distributed hybrid quantum convolutional neural network based on quantum circuit splitting.<n>By integrating distributed techniques based on quantum circuit splitting, the 8-qubit QCNN can be reconstructed using only 5 qubits.<n>Our model achieves strong performance across 3 datasets for both binary and multiclass classification tasks.
arXiv Detail & Related papers (2025-01-07T11:58:40Z) - Leveraging Pre-Trained Neural Networks to Enhance Machine Learning with Variational Quantum Circuits [48.33631905972908]
We introduce an innovative approach that utilizes pre-trained neural networks to enhance Variational Quantum Circuits (VQC)
This technique effectively separates approximation error from qubit count and removes the need for restrictive conditions.
Our results extend to applications such as human genome analysis, demonstrating the broad applicability of our approach.
arXiv Detail & Related papers (2024-11-13T12:03:39Z) - Brain Tumor Classification on MRI in Light of Molecular Markers [61.77272414423481]
Co-deletion of the 1p/19q gene is associated with clinical outcomes in low-grade gliomas.
This study aims to utilize a specially MRI-based convolutional neural network for brain cancer detection.
arXiv Detail & Related papers (2024-09-29T07:04:26Z) - CompressedMediQ: Hybrid Quantum Machine Learning Pipeline for High-Dimensional Neuroimaging Data [1.3359321655273804]
This paper introduces CompressedMediQ, a novel hybrid quantum-classical machine learning pipeline.
It addresses the computational challenges associated with high-dimensional multi-class neuroimaging data analysis.
arXiv Detail & Related papers (2024-09-13T07:03:01Z) - Pediatric TSC-Related Epilepsy Classification from Clinical MR Images Using Quantum Neural Network [17.788579893962492]
This study introduces QResNet, a novel deep learning model seamlessly integrating conventional convolutional neural networks with quantum neural networks.
A comprehensive evaluation, demonstrates the superior performance of QResNet in TSC MRI image classification compared to conventional 3D-ResNet models.
arXiv Detail & Related papers (2024-08-08T14:11:06Z) - Coherent Feed Forward Quantum Neural Network [2.1178416840822027]
Quantum machine learning, focusing on quantum neural networks (QNNs), remains a vastly uncharted field of study.
We introduce a bona fide QNN model, which seamlessly aligns with the versatility of a traditional FFNN in terms of its adaptable intermediate layers and nodes.
We test our proposed model on various benchmarking datasets such as the diagnostic breast cancer (Wisconsin) and credit card fraud detection datasets.
arXiv Detail & Related papers (2024-02-01T15:13:26Z) - Bridging Classical and Quantum Machine Learning: Knowledge Transfer From Classical to Quantum Neural Networks Using Knowledge Distillation [0.0]
We present a novel framework for transferring knowledge from classical convolutional neural networks (CNNs) to quantum neural networks (QNNs)<n>We conduct extensive experiments using two parameterized quantum circuits (PQCs) with 4 and 8 qubits on MNIST, Fashion MNIST, and CIFAR10 datasets.<n>Our results establish a promising paradigm for bridging classical deep learning and emerging quantum computing, paving the way for more powerful, resource conscious models in quantum machine intelligence.
arXiv Detail & Related papers (2023-11-23T05:06:43Z) - The effect of data augmentation and 3D-CNN depth on Alzheimer's Disease
detection [51.697248252191265]
This work summarizes and strictly observes best practices regarding data handling, experimental design, and model evaluation.
We focus on Alzheimer's Disease (AD) detection, which serves as a paradigmatic example of challenging problem in healthcare.
Within this framework, we train predictive 15 models, considering three different data augmentation strategies and five distinct 3D CNN architectures.
arXiv Detail & Related papers (2023-09-13T10:40:41Z) - Pre-training Tensor-Train Networks Facilitates Machine Learning with Variational Quantum Circuits [70.97518416003358]
Variational quantum circuits (VQCs) hold promise for quantum machine learning on noisy intermediate-scale quantum (NISQ) devices.
While tensor-train networks (TTNs) can enhance VQC representation and generalization, the resulting hybrid model, TTN-VQC, faces optimization challenges due to the Polyak-Lojasiewicz (PL) condition.
To mitigate this challenge, we introduce Pre+TTN-VQC, a pre-trained TTN model combined with a VQC.
arXiv Detail & Related papers (2023-05-18T03:08:18Z) - Continuous time recurrent neural networks: overview and application to
forecasting blood glucose in the intensive care unit [56.801856519460465]
Continuous time autoregressive recurrent neural networks (CTRNNs) are a deep learning model that account for irregular observations.
We demonstrate the application of these models to probabilistic forecasting of blood glucose in a critical care setting.
arXiv Detail & Related papers (2023-04-14T09:39:06Z) - Implementing a Hybrid Quantum-Classical Neural Network by Utilizing a
Variational Quantum Circuit for Detection of Dementia [0.0]
Nearly 1 in 3 patients with Alzheimer's were misdiagnosed in 2019, an issue neural networks can rectify.
This study found that the proposed hybrid quantum-classical convolutional neural network (QCCNN) provided 97.5% and 95.1% testing and validation accuracies.
QCCNN detected normal and demented images correctly 95% and 98% of the time, compared to the CNN accuracies of 89% and 91%.
arXiv Detail & Related papers (2023-01-29T18:05:42Z) - ANNETTE: Accurate Neural Network Execution Time Estimation with Stacked
Models [56.21470608621633]
We propose a time estimation framework to decouple the architectural search from the target hardware.
The proposed methodology extracts a set of models from micro- kernel and multi-layer benchmarks and generates a stacked model for mapping and network execution time estimation.
We compare estimation accuracy and fidelity of the generated mixed models, statistical models with the roofline model, and a refined roofline model for evaluation.
arXiv Detail & Related papers (2021-05-07T11:39:05Z) - A Systematic Approach to Featurization for Cancer Drug Sensitivity
Predictions with Deep Learning [49.86828302591469]
We train >35,000 neural network models, sweeping over common featurization techniques.
We found the RNA-seq to be highly redundant and informative even with subsets larger than 128 features.
arXiv Detail & Related papers (2020-04-30T20:42:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.