論文の概要: InfoGNN: End-to-end deep learning on mesh via graph neural networks
- arxiv url: http://arxiv.org/abs/2503.02414v1
- Date: Tue, 04 Mar 2025 08:58:30 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-05 19:22:04.877707
- Title: InfoGNN: End-to-end deep learning on mesh via graph neural networks
- Title(参考訳): InfoGNN: グラフニューラルネットワークによるメッシュのエンドツーエンドディープラーニング
- Authors: Ling Gao, Zhenyu Shu, Shiqing Xin,
- Abstract要約: 本稿では,グラフニューラルネットワーク(GNN)を中心としたメッシュモデルにおいて,ディープラーニングに関わる課題に対処する,新たなエンドツーエンドフレームワークを提案する。
さらに、InfoGNNはエンドツーエンドのフレームワークであり、ネットワーク設計をより効率的にするために単純化します。
その結果,InfoGNNはメッシュ分類やセグメンテーションタスクにおいて優れた性能を発揮することがわかった。
- 参考スコア(独自算出の注目度): 12.362122532209332
- License:
- Abstract: 3D models are widely used in various industries, and mesh data has become an indispensable part of 3D modeling because of its unique advantages. Mesh data can provide an intuitive and practical expression of rich 3D information. However, its disordered, irregular data structure and complex surface information make it challenging to apply with deep learning models directly. Traditional mesh data processing methods often rely on mesh models with many limitations, such as manifold, which restrict their application scopes in reality and do not fully utilize the advantages of mesh models. This paper proposes a novel end-to-end framework for addressing the challenges associated with deep learning in mesh models centered around graph neural networks (GNN) and is titled InfoGNN. InfoGNN treats the mesh model as a graph, which enables it to handle irregular mesh data efficiently. Moreover, we propose InfoConv and InfoMP modules, which utilize the position information of the points and fully use the static information such as face normals, dihedral angles, and dynamic global feature information to fully use all kinds of data. In addition, InfoGNN is an end-to-end framework, and we simplify the network design to make it more efficient, paving the way for efficient deep learning of complex 3D models. We conducted experiments on several publicly available datasets, and the results show that InfoGNN achieves excellent performance in mesh classification and segmentation tasks.
- Abstract(参考訳): 3Dモデルは様々な産業で広く使われており、メッシュデータはそのユニークな利点のために3Dモデリングに欠かせない部分となっている。
メッシュデータは、リッチな3D情報の直感的で実用的な表現を提供する。
しかし、不規則で不規則なデータ構造と複雑な表面情報により、ディープラーニングモデルを直接適用することは困難である。
従来のメッシュデータ処理方法は、実際にはアプリケーションスコープを制限し、メッシュモデルの利点を完全に活用しない多様体など、多くの制限のあるメッシュモデルに依存していることが多い。
本稿では,グラフニューラルネットワーク(GNN)を中心としたメッシュモデルにおいて,ディープラーニングに関わる課題に対処する,新たなエンドツーエンドフレームワークを提案し,InfoGNNと題する。
InfoGNNはメッシュモデルをグラフとして扱い、不規則なメッシュデータを効率的に扱うことができる。
さらに,各点の位置情報を利用するInfoConvとInfoMPモジュールを提案し,顔の正規度,二面角,動的グローバル特徴情報などの静的情報をフル活用して,あらゆる種類のデータを完全に活用する。
さらに、InfoGNNはエンドツーエンドのフレームワークであり、ネットワーク設計を単純化してより効率的にし、複雑な3Dモデルの効率的な深層学習の道を開く。
そこで我々は,いくつかの公開データセットの実験を行った。その結果,InfoGNNはメッシュ分類やセグメンテーションタスクにおいて優れた性能を発揮することがわかった。
関連論文リスト
- MeshXL: Neural Coordinate Field for Generative 3D Foundation Models [51.1972329762843]
本稿では,現代の大規模言語モデルを用いた3次元メッシュ生成のプロセスに対処する,事前学習型自己回帰モデルの生成ファミリを提案する。
MeshXLは高品質な3Dメッシュを生成することができ、さまざまなダウンストリームアプリケーションの基盤モデルとしても機能する。
論文 参考訳(メタデータ) (2024-05-31T14:35:35Z) - E(3)-Equivariant Mesh Neural Networks [16.158762988735322]
三角形メッシュは3次元オブジェクトを表現するために広く使われている。
近年の多くの研究は、3Dメッシュ上での幾何学的深層学習の必要性に対処している。
E(n)-同変グラフニューラルネットワーク(EGNN)の方程式を拡張し、メッシュフェイス情報を組み込む。
結果として得られるアーキテクチャであるEMNN(Equivariant Mesh Neural Network)は、メッシュタスクにおいて、他のより複雑な同変手法よりも優れている。
論文 参考訳(メタデータ) (2024-02-07T13:21:41Z) - AutoSynth: Learning to Generate 3D Training Data for Object Point Cloud
Registration [69.21282992341007]
Auto Synthは、ポイントクラウド登録のための3Dトレーニングデータを自動的に生成する。
私たちはポイントクラウド登録ネットワークをもっと小さなサロゲートネットワークに置き換え、4056.43$のスピードアップを実現しました。
TUD-L,LINEMOD,Occluded-LINEMODに関する我々の研究結果は,検索データセットでトレーニングされたニューラルネットワークが,広く使用されているModelNet40データセットでトレーニングされたニューラルネットワークよりも一貫してパフォーマンスが向上していることを示す。
論文 参考訳(メタデータ) (2023-09-20T09:29:44Z) - MLGCN: An Ultra Efficient Graph Convolution Neural Model For 3D Point
Cloud Analysis [4.947552172739438]
グラフニューラルネットワーク(GNN)ブロックを用いて,特定の局所レベルの3次元点雲から特徴を抽出する,MLGCN(Multi-level Graph Convolution Neural)モデルを提案する。
提案手法は,浮動小数点演算(FLOP)の最大1000倍の削減と,ストレージ要求の大幅な削減を図りながら,最先端モデルに匹敵する結果をもたらす。
論文 参考訳(メタデータ) (2023-03-31T00:15:22Z) - GCondNet: A Novel Method for Improving Neural Networks on Small High-Dimensional Tabular Data [14.124731264553889]
我々はGCondNetを提案し、データに存在する暗黙構造を活用してニューラルネットワークを強化する。
GCondNetはデータの高次元性を利用して、基礎となる予測ネットワークの性能を向上させる。
GCondNetが実世界の12のデータセットに対して有効であることを示す。
論文 参考訳(メタデータ) (2022-11-11T16:13:34Z) - A Robust Stacking Framework for Training Deep Graph Models with
Multifaceted Node Features [61.92791503017341]
数値ノード特徴とグラフ構造を入力とするグラフニューラルネットワーク(GNN)は,グラフデータを用いた各種教師付き学習タスクにおいて,優れた性能を示した。
IID(non-graph)データをGNNに簡単に組み込むことはできない。
本稿では、グラフ認識の伝播をIDデータに意図した任意のモデルで融合するロバストな積み重ねフレームワークを提案する。
論文 参考訳(メタデータ) (2022-06-16T22:46:33Z) - Data-Free Adversarial Knowledge Distillation for Graph Neural Networks [62.71646916191515]
グラフ構造化データ(DFAD-GNN)を用いたデータフリー逆知識蒸留のための第1のエンドツーエンドフレームワークを提案する。
具体的には、DFAD-GNNは、教師モデルと学生モデルとを2つの識別器とみなし、教師モデルから学生モデルに知識を抽出するために学習グラフを導出するジェネレータという、主に3つの成分からなる生成的対向ネットワークを採用している。
我々のDFAD-GNNは、グラフ分類タスクにおける最先端のデータフリーベースラインを大幅に上回っている。
論文 参考訳(メタデータ) (2022-05-08T08:19:40Z) - Local Grid Rendering Networks for 3D Object Detection in Point Clouds [98.02655863113154]
CNNは強力だが、全点の雲を高密度の3Dグリッドに酸化した後、点データに直接畳み込みを適用するのは計算コストがかかる。
入力点のサブセットの小さな近傍を低解像度の3Dグリッドに独立してレンダリングする,新しい,原理化されたローカルグリッドレンダリング(LGR)演算を提案する。
ScanNetとSUN RGB-Dデータセットを用いた3次元オブジェクト検出のためのLGR-Netを検証する。
論文 参考訳(メタデータ) (2020-07-04T13:57:43Z) - Fully Convolutional Mesh Autoencoder using Efficient Spatially Varying
Kernels [41.81187438494441]
任意の登録メッシュデータに対する非テンプレート固有完全畳み込みメッシュオートエンコーダを提案する。
我々のモデルは、復元精度の最先端手法よりも優れています。
論文 参考訳(メタデータ) (2020-06-08T02:30:13Z) - Learning Local Neighboring Structure for Robust 3D Shape Representation [143.15904669246697]
3Dメッシュの表現学習は多くのコンピュータビジョンやグラフィックスアプリケーションにおいて重要である。
局所構造認識型異方性畳み込み操作(LSA-Conv)を提案する。
本モデルでは,3次元形状復元において最先端の手法に比べて顕著な改善が得られた。
論文 参考訳(メタデータ) (2020-04-21T13:40:03Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。