論文の概要: AILS-NTUA at SemEval-2025 Task 3: Leveraging Large Language Models and Translation Strategies for Multilingual Hallucination Detection
- arxiv url: http://arxiv.org/abs/2503.02442v1
- Date: Tue, 04 Mar 2025 09:38:57 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-05 19:20:01.120415
- Title: AILS-NTUA at SemEval-2025 Task 3: Leveraging Large Language Models and Translation Strategies for Multilingual Hallucination Detection
- Title(参考訳): SemEval-2025 Task 3におけるAILS-NTUA:多言語幻覚検出のための大規模言語モデルと翻訳戦略の活用
- Authors: Dimitra Karkani, Maria Lymperaiou, Giorgos Filandrianos, Nikolaos Spanos, Athanasios Voulodimos, Giorgos Stamou,
- Abstract要約: 本稿では,多言語テキストを英語に翻訳することで,幻覚検出の効率化を図る,効率的な学習不要なLCMプロンプト戦略を提案する。
提案手法は,複数の言語にまたがる競合的ランキングを達成し,低リソース言語における2つの第1位を確保する。
- 参考スコア(独自算出の注目度): 4.8858843645116945
- License:
- Abstract: Multilingual hallucination detection stands as an underexplored challenge, which the Mu-SHROOM shared task seeks to address. In this work, we propose an efficient, training-free LLM prompting strategy that enhances detection by translating multilingual text spans into English. Our approach achieves competitive rankings across multiple languages, securing two first positions in low-resource languages. The consistency of our results highlights the effectiveness of our translation strategy for hallucination detection, demonstrating its applicability regardless of the source language.
- Abstract(参考訳): 多言語幻覚検出は、Mu-SHROOM共有タスクが解決しようとする未発見の課題である。
本研究では,多言語テキストを英語に翻訳することで,検出を効率化する学習不要なLLMプロンプト戦略を提案する。
提案手法は,複数の言語にまたがる競合的ランキングを達成し,低リソース言語における2つの第1位を確保する。
結果の整合性は, 幻覚検出における翻訳戦略の有効性を強調し, ソース言語によらずその適用性を示す。
関連論文リスト
- Blessing of Multilinguality: A Systematic Analysis of Multilingual In-Context Learning [6.66199855001719]
混合HRLのデモンストレーションは、英語のみのデモよりも一貫して優れていることを示す。
意外なことに、我々のアブレーション研究は、そのプロンプトに無関係な非英語文が存在することが、測定可能な利益をもたらすことを示している。
論文 参考訳(メタデータ) (2025-02-17T02:27:35Z) - Beyond English: The Impact of Prompt Translation Strategies across Languages and Tasks in Multilingual LLMs [13.458891794688551]
我々は,低リソース言語と高リソース言語の両方をカバーする35言語を対象とした事前翻訳戦略を評価する。
本実験は,英語との類似性,翻訳品質,事前学習データのサイズなどの要因が,事前翻訳によるモデル性能に与える影響を示す。
論文 参考訳(メタデータ) (2025-02-13T13:49:30Z) - Centurio: On Drivers of Multilingual Ability of Large Vision-Language Model [66.17354128553244]
多くのLVLM(Large Vision-Language Models)は、主に英語のデータに基づいて訓練されている。
異なる言語群に対する学習がいかに異なるかを検討する。
私たちはCenturio(100言語LVLM)をトレーニングし、14のタスクと56の言語を対象とした評価で最先端のパフォーマンスを提供する。
論文 参考訳(メタデータ) (2025-01-09T10:26:14Z) - USTCCTSU at SemEval-2024 Task 1: Reducing Anisotropy for Cross-lingual Semantic Textual Relatedness Task [17.905282052666333]
言語間セマンティックテキスト関連性タスクは,言語間コミュニケーションやテキスト理解における課題に対処する重要な研究課題である。
これは、機械翻訳、多言語情報検索、言語間テキスト理解といった下流タスクに不可欠な、異なる言語間のセマンティックな接続を確立するのに役立つ。
当社のアプローチでは、スペインで2位、インドネシアで3位、そしてトップ10の複数のエントリーが、コンペティションのトラックCで行われます。
論文 参考訳(メタデータ) (2024-11-28T08:40:14Z) - Decomposed Prompting: Unveiling Multilingual Linguistic Structure
Knowledge in English-Centric Large Language Models [12.700783525558721]
GPT-3やLLaMAのような英語中心のLarge Language Models (LLM)は、多言語タスクを実行する素晴らしい能力を示している。
本稿では,シーケンスラベリングタスクにおいて,これらのLLMの言語構造理解を探索するための分解的プロンプト手法を提案する。
論文 参考訳(メタデータ) (2024-02-28T15:15:39Z) - Efficiently Aligned Cross-Lingual Transfer Learning for Conversational
Tasks using Prompt-Tuning [98.60739735409243]
英語のような高リソース言語で訓練された言語モデルの言語間移動は、多くのNLPタスクのために広く研究されている。
並列および大規模多言語会話データセットである言語間アライメント事前学習のためのXSGDを導入する。
協調的な言語間表現を容易にするために,アライメントプロンプトを学習するための効率的なプロンプトチューニング手法を開発した。
論文 参考訳(メタデータ) (2023-04-03T18:46:01Z) - Hindi as a Second Language: Improving Visually Grounded Speech with
Semantically Similar Samples [89.16814518860357]
本研究の目的は,多言語の観点からの視覚的基盤音声モデル(VGS)の学習を検討することである。
この研究における重要な貢献は、低リソース言語の性能を向上させるために、バイリンガルな視覚的基盤を持つ音声モデルにおける高リソース言語のパワーを活用することである。
論文 参考訳(メタデータ) (2023-03-30T16:34:10Z) - Evaluating Multilingual Text Encoders for Unsupervised Cross-Lingual
Retrieval [51.60862829942932]
本稿では,言語間文書・文検索タスクにおける最先端多言語エンコーダの適合性に着目した体系的実証研究を行う。
文レベルのCLIRでは、最先端のパフォーマンスが達成できることを実証する。
しかし、ピーク性能は、汎用の多言語テキストエンコーダをオフ・ザ・シェルフで使うのではなく、文の理解タスクにさらに特化したバリエーションに依存している。
論文 参考訳(メタデータ) (2021-01-21T00:15:38Z) - On Learning Universal Representations Across Languages [37.555675157198145]
文レベルの表現を学習するための既存のアプローチを拡張し、言語間理解と生成の有効性を示す。
具体的には,複数の言語に分散した並列文の普遍表現を学習するための階層型コントラスト学習(HiCTL)手法を提案する。
我々は、XTREMEと機械翻訳という2つの難解な言語間タスクについて評価を行う。
論文 参考訳(メタデータ) (2020-07-31T10:58:39Z) - Enhancing Answer Boundary Detection for Multilingual Machine Reading
Comprehension [86.1617182312817]
そこで我々は,句境界管理を付加するために,微調整段階における2つの補助的タスクを提案する。
混合機械読解タスクは、質問または通過を他の言語に翻訳し、言語横断の問合せペアを構築する。
Webから抽出した知識フレーズを活用する言語に依存しない知識マスキングタスク。
論文 参考訳(メタデータ) (2020-04-29T10:44:00Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。