論文の概要: USTCCTSU at SemEval-2024 Task 1: Reducing Anisotropy for Cross-lingual Semantic Textual Relatedness Task
- arxiv url: http://arxiv.org/abs/2411.18990v1
- Date: Thu, 28 Nov 2024 08:40:14 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-02 15:22:32.084939
- Title: USTCCTSU at SemEval-2024 Task 1: Reducing Anisotropy for Cross-lingual Semantic Textual Relatedness Task
- Title(参考訳): UTCCTSU at SemEval-2024 Task 1: Reducing anisotropy for cross-lingual Semantic Textual Relatedness Task (英語)
- Authors: Jianjian Li, Shengwei Liang, Yong Liao, Hongping Deng, Haiyang Yu,
- Abstract要約: 言語間セマンティックテキスト関連性タスクは,言語間コミュニケーションやテキスト理解における課題に対処する重要な研究課題である。
これは、機械翻訳、多言語情報検索、言語間テキスト理解といった下流タスクに不可欠な、異なる言語間のセマンティックな接続を確立するのに役立つ。
当社のアプローチでは、スペインで2位、インドネシアで3位、そしてトップ10の複数のエントリーが、コンペティションのトラックCで行われます。
- 参考スコア(独自算出の注目度): 17.905282052666333
- License:
- Abstract: Cross-lingual semantic textual relatedness task is an important research task that addresses challenges in cross-lingual communication and text understanding. It helps establish semantic connections between different languages, crucial for downstream tasks like machine translation, multilingual information retrieval, and cross-lingual text understanding.Based on extensive comparative experiments, we choose the XLM-R-base as our base model and use pre-trained sentence representations based on whitening to reduce anisotropy.Additionally, for the given training data, we design a delicate data filtering method to alleviate the curse of multilingualism. With our approach, we achieve a 2nd score in Spanish, a 3rd in Indonesian, and multiple entries in the top ten results in the competition's track C. We further do a comprehensive analysis to inspire future research aimed at improving performance on cross-lingual tasks.
- Abstract(参考訳): 言語間セマンティックテキスト関連性タスクは,言語間コミュニケーションやテキスト理解における課題に対処する重要な研究課題である。
機械翻訳,多言語情報検索,言語間テキスト理解などの下流タスクにおいて重要な,さまざまな言語間のセマンティックな接続を確立するのに役立つ。大規模な比較実験により,XLM-Rベースをベースモデルとして選択し,ホワイトニングに基づく事前学習文表現を用いて異方性を低減するとともに,与えられたトレーニングデータに対して,多言語主義の呪いを軽減するための繊細なデータフィルタリング手法を設計する。
われわれのアプローチでは、スペイン語で2位、インドネシアで3位、コンペのコースCで上位10の項目を複数獲得する。
関連論文リスト
- CrossIn: An Efficient Instruction Tuning Approach for Cross-Lingual Knowledge Alignment [38.35458193262633]
英語中心のモデルは、通常他の言語では準最適である。
そこで本研究では,言語間命令チューニングデータの混合合成を利用したCrossInという新しい手法を提案する。
論文 参考訳(メタデータ) (2024-04-18T06:20:50Z) - AAdaM at SemEval-2024 Task 1: Augmentation and Adaptation for Multilingual Semantic Textual Relatedness [16.896143197472114]
本稿では,アフリカとアジアの言語に対するセマンティックテキスト関連性(SemEval-2024 Task 1: Semantic Textual Relatedness)について述べる。
本稿では,限られたトレーニングデータの低リソース化問題に対処するために,機械翻訳によるデータ拡張を提案する。
我々のシステムは、サブタスクA(教師付き学習)とサブタスクC(言語間の移動)の両方において、すべてのチームの中で最善を尽くします。
論文 参考訳(メタデータ) (2024-04-01T21:21:15Z) - Cross-lingual Contextualized Phrase Retrieval [63.80154430930898]
そこで本研究では,言語間関係の単語検索を多義的に行うタスクの定式化を提案する。
我々は、コントラスト学習を用いて、言語間コンテクスト対応句検索(CCPR)を訓練する。
フレーズ検索タスクでは、CCPRはベースラインをかなり上回り、少なくとも13ポイント高いトップ1の精度を達成する。
論文 参考訳(メタデータ) (2024-03-25T14:46:51Z) - Efficiently Aligned Cross-Lingual Transfer Learning for Conversational
Tasks using Prompt-Tuning [98.60739735409243]
英語のような高リソース言語で訓練された言語モデルの言語間移動は、多くのNLPタスクのために広く研究されている。
並列および大規模多言語会話データセットである言語間アライメント事前学習のためのXSGDを導入する。
協調的な言語間表現を容易にするために,アライメントプロンプトを学習するための効率的なプロンプトチューニング手法を開発した。
論文 参考訳(メタデータ) (2023-04-03T18:46:01Z) - CONCRETE: Improving Cross-lingual Fact-checking with Cross-lingual
Retrieval [73.48591773882052]
ほとんどのファクトチェックアプローチは、他の言語におけるデータ不足の問題にのみ英語に焦点を当てている。
クロスリンガル検索を付加した最初のファクトチェックフレームワークを提案する。
提案したクロスリンガル逆クローズタスク(XICT)を用いてレトリバーを訓練する。
論文 参考訳(メタデータ) (2022-09-05T17:36:14Z) - Bridging Cross-Lingual Gaps During Leveraging the Multilingual
Sequence-to-Sequence Pretraining for Text Generation [80.16548523140025]
プレトレインとファインチューンの間のギャップを埋めるために、コードスイッチングの復元タスクを追加して、バニラプレトレイン-ファインチューンパイプラインを拡張します。
提案手法は,言語間文表現距離を狭くし,簡単な計算コストで低周波語翻訳を改善する。
論文 参考訳(メタデータ) (2022-04-16T16:08:38Z) - Improving Speech Translation by Understanding and Learning from the
Auxiliary Text Translation Task [26.703809355057224]
我々は,タスクがマルチタスク学習フレームワークにおけるメインタスクに与える影響を理解するために,詳細な分析を行う。
解析により、マルチタスク学習は、異なるモダリティから同様のデコーダ表現を生成する傾向があることを確認した。
これらの知見に触発されて,翻訳品質を向上させる3つの方法を提案する。
論文 参考訳(メタデータ) (2021-07-12T23:53:40Z) - MCL@IITK at SemEval-2021 Task 2: Multilingual and Cross-lingual
Word-in-Context Disambiguation using Augmented Data, Signals, and
Transformers [1.869621561196521]
我々はSemEval 2021 Task 2: Multilingual and cross-lingual Word-in-Context Disambiguation (MCL-WiC) の解法を提案する。
目的は、両方の文に共通する単語が同じ意味を引き起こすかどうかを検出することである。
多言語とクロスリンガルの両方の設定のためのシステムを提出します。
論文 参考訳(メタデータ) (2021-04-04T08:49:28Z) - Mixed-Lingual Pre-training for Cross-lingual Summarization [54.4823498438831]
言語間の要約は、ソース言語の記事に対する対象言語の要約を作成することを目的としている。
本稿では,翻訳のような言語間タスクと,マスク付き言語モデルのようなモノリンガルタスクの両方を活用する混合言語事前学習に基づくソリューションを提案する。
本モデルでは,2.82(中国語)と1.15(中国語,英語)のROUGE-1スコアを最先端の結果に対して改善する。
論文 参考訳(メタデータ) (2020-10-18T00:21:53Z) - Enhancing Answer Boundary Detection for Multilingual Machine Reading
Comprehension [86.1617182312817]
そこで我々は,句境界管理を付加するために,微調整段階における2つの補助的タスクを提案する。
混合機械読解タスクは、質問または通過を他の言語に翻訳し、言語横断の問合せペアを構築する。
Webから抽出した知識フレーズを活用する言語に依存しない知識マスキングタスク。
論文 参考訳(メタデータ) (2020-04-29T10:44:00Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。