論文の概要: A Novel Streamline-based diffusion MRI Tractography Registration Method with Probabilistic Keypoint Detection
- arxiv url: http://arxiv.org/abs/2503.02481v1
- Date: Tue, 04 Mar 2025 10:47:10 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-05 19:17:51.518306
- Title: A Novel Streamline-based diffusion MRI Tractography Registration Method with Probabilistic Keypoint Detection
- Title(参考訳): 確率的キーポイント検出を用いた新しいストリームベース拡散MRIトラクトグラフィ登録法
- Authors: Junyi Wang, Mubai Du, Ye Wu, Yijie Li, William M. Wells III, Lauren J. O'Donnell, Fan Zhang,
- Abstract要約: 本稿では,ディープラーニングを用いた新しい教師なし手法を提案する。
全体的な考え方は、トラクトグラフィーデータセットの空間的アライメントのために、被験者間で対応するキーポイントペアを特定することである。
- 参考スコア(独自算出の注目度): 9.699179134510103
- License:
- Abstract: Registration of diffusion MRI tractography is an essential step for analyzing group similarities and variations in the brain's white matter (WM). Streamline-based registration approaches can leverage the 3D geometric information of fiber pathways to enable spatial alignment after registration. Existing methods usually rely on the optimization of the spatial distances to identify the optimal transformation. However, such methods overlook point connectivity patterns within the streamline itself, limiting their ability to identify anatomical correspondences across tractography datasets. In this work, we propose a novel unsupervised approach using deep learning to perform streamline-based dMRI tractography registration. The overall idea is to identify corresponding keypoint pairs across subjects for spatial alignment of tractography datasets. We model tractography as point clouds to leverage the graph connectivity along streamlines. We propose a novel keypoint detection method for streamlines, framed as a probabilistic classification task to identify anatomically consistent correspondences across unstructured streamline sets. In the experiments, we compare several existing methods and show highly effective and efficient tractography registration performance.
- Abstract(参考訳): 拡散MRIトラクトグラフィーの登録は、脳の白色物質(WM)の群類似性や変異を分析するための重要なステップである。
ストリームラインベースの登録手法は、繊維経路の3次元幾何学的情報を利用して、登録後の空間的アライメントを可能にする。
既存の手法は通常、最適変換を特定するために空間距離の最適化に依存する。
しかし、このような手法は、ストリーライン自体内の点接続パターンを見落とし、トラクトグラフィーデータセット間の解剖学的対応を識別する能力を制限する。
本研究では,ディープラーニングを用いた新しい教師なし手法を提案する。
全体的な考え方は、トラクトグラフィーデータセットの空間的アライメントのために、被験者間で対応するキーポイントペアを特定することである。
トラクトグラフィーをポイントクラウドとしてモデル化し、ストリームラインに沿ったグラフ接続を活用します。
本研究では,非構造的ストリームライン集合間の解剖学的一貫した対応を識別する確率的分類タスクとして,ストリームラインの新しいキーポイント検出手法を提案する。
実験では,既存のいくつかの手法を比較し,高速かつ効率的なトラクトグラフィー登録性能を示す。
関連論文リスト
- Generalizing Segmentation Foundation Model Under Sim-to-real Domain-shift for Guidewire Segmentation in X-ray Fluoroscopy [1.4353812560047192]
Sim-to-real ドメイン適応アプローチは、コスト効率の良いソリューションを提供するシミュレーションから合成データを利用する。
対象領域のアノテーションを使わずに、SAMを蛍光X線ガイドワイヤセグメント化に適応させる戦略を提案する。
提案手法は、事前訓練されたSAMと、最先端のドメイン適応技術の両方を大きなマージンで上回っている。
論文 参考訳(メタデータ) (2024-10-09T21:59:48Z) - TractCloud: Registration-free tractography parcellation with a novel
local-global streamline point cloud representation [63.842881844791094]
現在のトラクトグラフィーのパーセレーション法は登録に大きく依存しているが、登録の不正確さはパーセレーションに影響を及ぼす可能性がある。
我々は,個別の主題空間で直接,脳全体のトラクトログラフィ解析を行う,登録不要のフレームワークであるTractCloudを提案する。
論文 参考訳(メタデータ) (2023-07-18T06:35:12Z) - Joint segmentation and discontinuity-preserving deformable registration:
Application to cardiac cine-MR images [74.99415008543276]
多くの深層学習に基づく登録法は、変形場は画像領域の至る所で滑らかで連続的であると仮定する。
本研究では,この課題に対処するために,不連続かつ局所的に滑らかな変形場を確保するための新しい不連続保存画像登録手法を提案する。
入力画像の構造的相関を学習するために,ネットワークのセグメンテーション成分にコアテンションブロックを提案する。
大規模心磁気共鳴画像系列を用いた物体内時間画像登録の課題について検討した。
論文 参考訳(メタデータ) (2022-11-24T23:45:01Z) - A Hybrid Deep Feature-Based Deformable Image Registration Method for
Pathology Images [18.439134996404274]
病理学者は、正確な診断のために、異なる染色された病理スライスからの情報を組み合わせる必要がある。
本稿では, 染色された病理試料に対するハイブリッドな特徴量に基づく変形可能な画像登録フレームワークを提案する。
提案手法は,平均平均登録目標誤差(rTRE)が0.0034に達すると,従来の手法よりも17%向上する。
論文 参考訳(メタデータ) (2022-08-16T10:35:18Z) - Automatic Landmark Detection and Registration of Brain Cortical Surfaces
via Quasi-Conformal Geometry and Convolutional Neural Networks [17.78250777571423]
本稿では,脳皮質表面の自動的ランドマーク検出と登録のための新しい枠組みを提案する。
まず,ランドマーク曲線の自動抽出を可能にするランドマーク検出ネットワーク(LD-Net)を開発した。
次に,検出されたランドマークと準コンフォーマル理論を用いて表面登録を行う。
論文 参考訳(メタデータ) (2022-08-15T05:47:51Z) - Superficial White Matter Analysis: An Efficient Point-cloud-based Deep
Learning Framework with Supervised Contrastive Learning for Consistent
Tractography Parcellation across Populations and dMRI Acquisitions [68.41088365582831]
ホワイトマターパーセレーション(White matter parcellation)は、トラクトグラフィーをクラスタまたは解剖学的に意味のあるトラクトに分類する。
ほとんどのパーセレーション法はディープホワイトマター(DWM)にフォーカスするが、その複雑さのため表面ホワイトマター(SWM)に対処する手法は少ない。
本稿では,2段階の深層学習に基づく新しいフレームワークであるSuperficial White Matter Analysis (SupWMA)を提案する。
論文 参考訳(メタデータ) (2022-07-18T23:07:53Z) - Affine Medical Image Registration with Coarse-to-Fine Vision Transformer [11.4219428942199]
本稿では,3次元医用画像登録のための学習ベースアルゴリズムであるCoarse-to-Fine Vision Transformer (C2FViT)を提案する。
本手法は, 登録精度, 堅牢性, 一般化性の観点から, 既存のCNNベースのアフィン登録法よりも優れている。
論文 参考訳(メタデータ) (2022-03-29T03:18:43Z) - Real-time landmark detection for precise endoscopic submucosal
dissection via shape-aware relation network [51.44506007844284]
内視鏡下粘膜下郭清術における高精度かつリアルタイムなランドマーク検出のための形状認識型関係ネットワークを提案する。
まず,ランドマーク間の空間的関係に関する先行知識を直感的に表現する関係キーポイント・ヒートマップを自動生成するアルゴリズムを考案する。
次に、事前知識を学習プロセスに段階的に組み込むために、2つの補完的な正規化手法を開発する。
論文 参考訳(メタデータ) (2021-11-08T07:57:30Z) - GCN for HIN via Implicit Utilization of Attention and Meta-paths [104.24467864133942]
不均一情報ネットワーク(HIN)埋め込みは、HINの構造と意味情報を分散表現にマッピングすることを目的としている。
本稿では,注意とメタパスを暗黙的に活用するニューラルネットワーク手法を提案する。
まず、各層で識別集約を行う多層グラフ畳み込みネットワーク(GCN)フレームワークを用いる。
次に,アグリゲーションから分離可能な新しい伝搬操作を導入することにより,効果的な緩和と改善を行う。
論文 参考訳(メタデータ) (2020-07-06T11:09:40Z) - Structured Landmark Detection via Topology-Adapting Deep Graph Learning [75.20602712947016]
解剖学的顔と医学的ランドマーク検出のための新しいトポロジ適応深層グラフ学習手法を提案する。
提案手法は局所像特徴と大域形状特徴の両方を利用するグラフ信号を構成する。
3つの公開顔画像データセット(WFLW、300W、COFW-68)と3つの現実世界のX線医学データセット(ケパロメトリ、ハンド、ペルビス)で実験を行った。
論文 参考訳(メタデータ) (2020-04-17T11:55:03Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。