論文の概要: LADM: Long-context Training Data Selection with Attention-based Dependency Measurement for LLMs
- arxiv url: http://arxiv.org/abs/2503.02502v1
- Date: Tue, 04 Mar 2025 11:10:13 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-05 19:19:58.863697
- Title: LADM: Long-context Training Data Selection with Attention-based Dependency Measurement for LLMs
- Title(参考訳): LADM:LLMの注意に基づく依存度測定による長期学習データ選択
- Authors: Jianghao Chen, Junhong Wu, Yangyifan Xu, Jiajun Zhang,
- Abstract要約: LLM(Large Language Models)の分野では、長いコンテキストモデリングがますます注目を集めている。
意識に基づく依存度測定(LADM)を用いたLong-contextデータ選択フレームワークを提案する。
LADMは大規模マルチドメイン事前学習コーパスから高品質の長文データを効率的に識別することができる。
- 参考スコア(独自算出の注目度): 8.34562564266839
- License:
- Abstract: Long-context modeling has drawn more and more attention in the area of Large Language Models (LLMs). Continual training with long-context data becomes the de-facto method to equip LLMs with the ability to process long inputs. However, it still remains an open challenge to measure the quality of long-context training data. To address this issue, we propose a Long-context data selection framework with Attention-based Dependency Measurement (LADM), which can efficiently identify high-quality long-context data from a large-scale, multi-domain pre-training corpus. LADM leverages the retrieval capabilities of the attention mechanism to capture contextual dependencies, ensuring a comprehensive quality measurement of long-context data. Experimental results show that our LADM framework significantly boosts the performance of LLMs on multiple long-context tasks with only 1B tokens for continual training.
- Abstract(参考訳): 長期コンテキストモデリングは、Large Language Models (LLMs) の分野でますます注目を集めている。
長いコンテキストデータによる継続的なトレーニングは、LLMに長い入力を処理する能力を持たせるためのデファクトメソッドとなる。
しかし、長いコンテキストのトレーニングデータの品質を測定することは、依然としてオープンな課題である。
この問題に対処するため,大規模・マルチドメイン事前学習コーパスから高品質な長文データを効率よく識別できる,意識ベース依存性測定(LADM)を用いたLong-contextデータ選択フレームワークを提案する。
LADMは、アテンションメカニズムの検索機能を活用し、コンテキスト依存を捕捉し、長期コンテキストデータの総合的な品質測定を保証する。
実験の結果, LADMフレームワークは, 連続訓練に1Bトークンしか使用せず, 複数の長文タスクにおけるLLMの性能を著しく向上させることがわかった。
関連論文リスト
- Reducing Distraction in Long-Context Language Models by Focused Learning [6.803882766744194]
本稿では,大規模言語モデルの関連情報を識別する能力を高める新しい学習手法を提案する。
長いコンテキストで微調整を行う際、最も関連性の高いセグメントを抽出するために検索器を用いる。
次に、元のコンテキストと検索したサブコンテキストからの出力が密接に一致していることを明確にするために、補助的なコントラスト学習対象を導入する。
論文 参考訳(メタデータ) (2024-11-08T19:27:42Z) - Rethinking Visual Dependency in Long-Context Reasoning for Large Vision-Language Models [62.698520962933195]
LVLM(Large Vision-Language Models)は、クロスモデルタスクでは優れているが、長文推論ではパフォーマンスが低下する。
そこで本研究では,重要でないテキスト情報を選択的に除去する,学習不要なコンテキストプルーニング手法を提案する。
論文 参考訳(メタデータ) (2024-10-25T17:59:09Z) - A Controlled Study on Long Context Extension and Generalization in LLMs [85.4758128256142]
広義のテキスト理解とテキスト内学習は、完全な文書コンテキストを利用する言語モデルを必要とする。
長期コンテキストモデルを直接訓練する際の実装上の課題のため、長期コンテキストを扱うためにモデルを拡張する多くの方法が提案されている。
我々は,一貫したベースモデルと拡張データを利用して,標準化された評価による拡張メソッドの制御プロトコルを実装した。
論文 参考訳(メタデータ) (2024-09-18T17:53:17Z) - LongSkywork: A Training Recipe for Efficiently Extending Context Length in Large Language Models [61.12177317970258]
LongSkyworkは、最大20万のトークンを処理できる、長いコンテキストのLarge Language Modelである。
我々は合成データを作成する2つの新しい方法を開発した。
LongSkyworkは、様々なロングコンテキストベンチマークで優れたパフォーマンスを実現している。
論文 参考訳(メタデータ) (2024-06-02T03:34:41Z) - Long Context is Not Long at All: A Prospector of Long-Dependency Data for Large Language Models [13.091271774417867]
長期コンテキストモデリング機能は、様々なアプリケーションにおいて大きな言語モデル(LLM)にとって重要である。
データマイニングフレームワーク textbfProLong を提案する。
複数のベンチマークに関する総合的な実験は、ProLongが長い依存関係を持つドキュメントを効果的に識別していることを示している。
論文 参考訳(メタデータ) (2024-05-28T07:36:56Z) - Long Context Alignment with Short Instructions and Synthesized Positions [56.1267385315404]
本稿では,ステップスキッピングアライメント(SkipAlign)を紹介する。
これは、Large Language Models(LLMs)の長期コンテキスト機能を強化するために設計された新しい技術である。
ベースモデルとアライメントデータセットを慎重に選択することで、SkipAlignは6Bパラメータだけで最高のパフォーマンスを実現し、LongBenchのGPT-3.5-Turbo-16Kのような強力なベースラインに匹敵する。
論文 参考訳(メタデータ) (2024-05-07T01:56:22Z) - LongWanjuan: Towards Systematic Measurement for Long Text Quality [102.46517202896521]
LongWanjuanは160B以上のトークンを持つ長文タスクのための言語モデルのトレーニングを強化するために特別に設計されたデータセットである。
LongWanjuanでは、長文を全体的、集約的、カオス的なタイプに分類し、長文品質の詳細な分析を可能にする。
我々は,LongWanjuan内で異なるタイプの長文を戦略的にバランスさせるデータ混合レシピを考案し,長文タスクにおけるモデル性能を大幅に改善した。
論文 参考訳(メタデータ) (2024-02-21T07:27:18Z) - Effective Long-Context Scaling of Foundation Models [90.57254298730923]
最大32,768個のトークンの効率的なコンテキストウィンドウをサポートする長文LLMを提示する。
我々のモデルは、ほとんどの通常のタスクにおいて一貫した改善を達成し、Llama 2よりも長いコンテキストタスクを大幅に改善します。
論文 参考訳(メタデータ) (2023-09-27T21:41:49Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。