論文の概要: Reducing Distraction in Long-Context Language Models by Focused Learning
- arxiv url: http://arxiv.org/abs/2411.05928v1
- Date: Fri, 08 Nov 2024 19:27:42 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-12 14:10:26.472104
- Title: Reducing Distraction in Long-Context Language Models by Focused Learning
- Title(参考訳): 集中学習による長期言語モデルの歪み低減
- Authors: Zijun Wu, Bingyuan Liu, Ran Yan, Lei Chen, Thomas Delteil,
- Abstract要約: 本稿では,大規模言語モデルの関連情報を識別する能力を高める新しい学習手法を提案する。
長いコンテキストで微調整を行う際、最も関連性の高いセグメントを抽出するために検索器を用いる。
次に、元のコンテキストと検索したサブコンテキストからの出力が密接に一致していることを明確にするために、補助的なコントラスト学習対象を導入する。
- 参考スコア(独自算出の注目度): 6.803882766744194
- License:
- Abstract: Recent advancements in Large Language Models (LLMs) have significantly enhanced their capacity to process long contexts. However, effectively utilizing this long context remains a challenge due to the issue of distraction, where irrelevant information dominates lengthy contexts, causing LLMs to lose focus on the most relevant segments. To address this, we propose a novel training method that enhances LLMs' ability to discern relevant information through a unique combination of retrieval-based data augmentation and contrastive learning. Specifically, during fine-tuning with long contexts, we employ a retriever to extract the most relevant segments, serving as augmented inputs. We then introduce an auxiliary contrastive learning objective to explicitly ensure that outputs from the original context and the retrieved sub-context are closely aligned. Extensive experiments on long single-document and multi-document QA benchmarks demonstrate the effectiveness of our proposed method.
- Abstract(参考訳): 大規模言語モデル(LLM)の最近の進歩は、長いコンテキストを処理する能力を大幅に向上させています。
しかし、この長いコンテキストを効果的に活用することは、無関係な情報が長いコンテキストを支配し、LLMが最も関連するセグメントに集中できなくなるという混乱の問題のため、依然として課題である。
そこで本研究では,検索に基づくデータ拡張とコントラスト学習のユニークな組み合わせにより,LLMが関連情報を識別する能力を高める新しい学習手法を提案する。
具体的には、長いコンテキストで微調整を行う際に、検索器を用いて最も関連性の高いセグメントを抽出し、拡張入力として機能する。
次に、元のコンテキストと検索したサブコンテキストからの出力が密接に一致していることを明確にするために、補助的なコントラスト学習対象を導入する。
長い単文書および複数文書のQAベンチマークの大規模な実験により,提案手法の有効性が示された。
関連論文リスト
- Rethinking Visual Dependency in Long-Context Reasoning for Large Vision-Language Models [62.698520962933195]
LVLM(Large Vision-Language Models)は、クロスモデルタスクでは優れているが、長文推論ではパフォーマンスが低下する。
そこで本研究では,重要でないテキスト情報を選択的に除去する,学習不要なコンテキストプルーニング手法を提案する。
論文 参考訳(メタデータ) (2024-10-25T17:59:09Z) - RA-BLIP: Multimodal Adaptive Retrieval-Augmented Bootstrapping Language-Image Pre-training [55.54020926284334]
近年,MLLM (Multimodal Large Language Models) が注目されている。
検索拡張技術はLLMとMLLMの両方に有効なプラグインであることが証明されている。
本研究では,MLLMの新しい検索支援フレームワークであるRA-BLIP(Retrieval-Augmented Bootstrapping Language-Image Pre-training)を提案する。
論文 参考訳(メタデータ) (2024-10-18T03:45:19Z) - FltLM: An Intergrated Long-Context Large Language Model for Effective Context Filtering and Understanding [32.197113821638936]
我々は,新しいLong-Context Large Language Model (FltLM)を提案する。
FltLMはコンテキストフィルタをソフトマスク機構に組み込み、関連する情報に集中するために無関係な内容を特定し、動的に排除する。
実験の結果,複雑なQAシナリオにおいて,FltLMは教師付き微調整法や検索法よりも優れていた。
論文 参考訳(メタデータ) (2024-10-09T13:47:50Z) - A Controlled Study on Long Context Extension and Generalization in LLMs [85.4758128256142]
広義のテキスト理解とテキスト内学習は、完全な文書コンテキストを利用する言語モデルを必要とする。
長期コンテキストモデルを直接訓練する際の実装上の課題のため、長期コンテキストを扱うためにモデルを拡張する多くの方法が提案されている。
我々は,一貫したベースモデルと拡張データを利用して,標準化された評価による拡張メソッドの制御プロトコルを実装した。
論文 参考訳(メタデータ) (2024-09-18T17:53:17Z) - DetectiveQA: Evaluating Long-Context Reasoning on Detective Novels [89.51834016940153]
本稿では,100K以上の平均コンテキスト長を持つナラティブ推論ベンチマークであるTectiveQAを紹介する。
探偵小説をデータソースとして使用し、様々な理由付け要素を自然に持っている。
私たちは中国語で600の質問を手動で注釈付けし、文脈情報と質問の英語版も提供しました。
論文 参考訳(メタデータ) (2024-09-04T06:28:22Z) - Retrieval Meets Reasoning: Dynamic In-Context Editing for Long-Text Understanding [11.5386284281652]
動的インテキスト編集による情報検索を再現する新しい手法を提案する。
長大な文脈を拡張可能な外部知識として扱うことにより,本手法は対話的に関連情報を収集・統合する。
実験結果から,提案手法はコンテキスト限定LLMを効果的に活用し,マルチホップ推論に有効であることを示す。
論文 参考訳(メタデータ) (2024-06-18T06:54:28Z) - Found in the Middle: How Language Models Use Long Contexts Better via
Plug-and-Play Positional Encoding [78.36702055076456]
本稿では,マルチスケール位置決めについて紹介する。
(Ms-PoE)は、シンプルで効果的なプラグアンドプレイ方式で、キャパシティを向上させる。
LLMはコンテキストの中央に位置する関連情報を扱う。
論文 参考訳(メタデータ) (2024-03-05T04:58:37Z) - C-ICL: Contrastive In-context Learning for Information Extraction [54.39470114243744]
c-ICLは、正しいサンプル構築と間違ったサンプル構築の両方を活用して、コンテキスト内学習のデモを作成する、新しい数ショット技術である。
各種データセットに対する実験により,c-ICLは従来の数発のインコンテキスト学習法よりも優れていたことが示唆された。
論文 参考訳(メタデータ) (2024-02-17T11:28:08Z) - Unlocking Context Constraints of LLMs: Enhancing Context Efficiency of
LLMs with Self-Information-Based Content Filtering [4.1372815372396525]
本稿では,少ない情報内容のフィルタリングに自己情報を利用するtextitSelective Contextを提案する。
我々は,複数のデータソースにまたがる要約と質問応答のタスクに対するアプローチの有効性を実証する。
論文 参考訳(メタデータ) (2023-04-24T13:55:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。