論文の概要: Towards a robust R2D2 paradigm for radio-interferometric imaging: revisiting DNN training and architecture
- arxiv url: http://arxiv.org/abs/2503.02554v1
- Date: Tue, 04 Mar 2025 12:26:45 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-05 19:21:07.002669
- Title: Towards a robust R2D2 paradigm for radio-interferometric imaging: revisiting DNN training and architecture
- Title(参考訳): ラジオ干渉画像のためのロバストなR2D2パラダイム--DNNトレーニングとアーキテクチャの再考
- Authors: Amir Aghabiglou, Chung San Chu, Chao Tang, Arwa Dabbech, Yves Wiaux,
- Abstract要約: R2D2 Deep Neural Network (DNN)シリーズは、最近、電波干渉計における画像形成のために導入された。
シリーズ収束、トレーニング手法、DNNアーキテクチャの観点からR2D2を再考する。
残差がノイズと互換性がある場合、再構成プロセスが停止する収束基準を導入する。
- 参考スコア(独自算出の注目度): 3.5872880578234816
- License:
- Abstract: The R2D2 Deep Neural Network (DNN) series was recently introduced for image formation in radio interferometry. It can be understood as a learned version of CLEAN, whose minor cycles are substituted with DNNs. We revisit R2D2 on the grounds of series convergence, training methodology, and DNN architecture, improving its robustness in terms of generalisability beyond training conditions, capability to deliver high data fidelity, and epistemic uncertainty. Firstly, while still focusing on telescope-specific training, we enhance the learning process by randomising Fourier sampling integration times, incorporating multi-scan multi-noise configurations, and varying imaging settings, including pixel resolution and visibility-weighting scheme. Secondly, we introduce a convergence criterion whereby the reconstruction process stops when the data residual is compatible with noise, rather than simply using all available DNNs. This not only increases the reconstruction efficiency by reducing its computational cost, but also refines training by pruning out the data/image pairs for which optimal data fidelity is reached before training the next DNN. Thirdly, we substitute R2D2's early U-Net DNN with a novel architecture (U-WDSR) combining U-Net and WDSR, which leverages wide activation, dense connections, weight normalisation, and low-rank convolution to improve feature reuse and reconstruction precision. As previously, R2D2 was trained for monochromatic intensity imaging with the Very Large Array (VLA) at fixed $512 \times 512$ image size. Simulations on a wide range of inverse problems and a case study on real data reveal that the new R2D2 model consistently outperforms its earlier version in image reconstruction quality, data fidelity, and epistemic uncertainty.
- Abstract(参考訳): R2D2 Deep Neural Network (DNN)シリーズは、最近、電波干渉計における画像形成のために導入された。
CLEANの学習版として理解でき、その小さなサイクルはDNNに置き換えられている。
我々は、R2D2をシリーズ収束、トレーニング方法論、DNNアーキテクチャに基づいて再検討し、トレーニング条件を超えた汎用性、高いデータ忠実性を提供する能力、およびエピステミック不確実性の観点からその堅牢性を改善した。
まず,望遠鏡固有のトレーニングに着目しながら,フーリエサンプリング統合時間をランダム化し,マルチスキャンのマルチノイズ構成を取り入れ,画素解像度や可視性重み付けといった様々な画像設定を取り入れることで,学習プロセスを強化する。
第二に、単に利用可能なDNNを全て使用するのではなく、残余データがノイズと互換性がある場合に、再構成プロセスが停止する収束基準を導入する。
これは、計算コストを削減して再構成効率を向上させるだけでなく、次のDNNをトレーニングする前に最適なデータ忠実度に達するデータ/イメージペアを抽出することで、トレーニングを洗練する。
第3に、R2D2の初期のU-Net DNNをU-NetとWDSRを組み合わせた新しいアーキテクチャ(U-WDSR)で置き換える。
前述したように、R2D2は、Very Large Array (VLA) で512 \times 512$画像サイズで単色強度イメージングのために訓練された。
幅広い逆問題に関するシミュレーションと実データに関するケーススタディにより、新しいR2D2モデルは、画像再構成の品質、データの忠実性、およびてんかん不確実性において、その初期バージョンを一貫して上回っていることが明らかとなった。
関連論文リスト
- DSplats: 3D Generation by Denoising Splats-Based Multiview Diffusion Models [67.50989119438508]
本稿では,ガウスをベースとしたレコンストラクタを用いて,リアルな3Dアセットを生成することで,マルチビュー画像を直接認識するDSplatを紹介した。
実験の結果,DSplatsは高品質で空間的に一貫した出力を生成できるだけでなく,単一画像から3次元再構成への新たな標準も設定できることがわかった。
論文 参考訳(メタデータ) (2024-12-11T07:32:17Z) - TCCT-Net: Two-Stream Network Architecture for Fast and Efficient Engagement Estimation via Behavioral Feature Signals [58.865901821451295]
本稿では,新しい2ストリーム機能融合 "Tensor-Convolution and Convolution-Transformer Network" (TCCT-Net) アーキテクチャを提案する。
時間空間領域における意味のあるパターンをよりよく学習するために、ハイブリッド畳み込み変換器を統合する「CT」ストリームを設計する。
並行して、時間周波数領域からリッチなパターンを効率的に抽出するために、連続ウェーブレット変換(CWT)を用いて情報を2次元テンソル形式で表現する「TC」ストリームを導入する。
論文 参考訳(メタデータ) (2024-04-15T06:01:48Z) - R2D2 image reconstruction with model uncertainty quantification in radio astronomy [1.7249361224827533]
Residual-to-Residual'(R2D2)アプローチは、天文学におけるRI(Radio-Interferometric)イメージングのために最近導入された。
R2D2の再構成は、ディープニューラルネットワーク(DNN)の出力として反復的に推定される一連の残像として形成される
本稿では,R2D2画像推定プロセスのロバスト性について,その一連の学習モデルに関連する不確実性について検討する。
論文 参考訳(メタデータ) (2024-03-26T19:10:08Z) - Scalable Non-Cartesian Magnetic Resonance Imaging with R2D2 [6.728969294264806]
本研究では,非電子磁気共鳴画像再構成のための新しい手法を提案する。
我々は「Residual to-Residual DNN series for high range imaging (R2D2)」を利用する。
論文 参考訳(メタデータ) (2024-03-26T17:45:06Z) - The R2D2 deep neural network series paradigm for fast precision imaging in radio astronomy [1.7249361224827533]
最近の画像再構成技術は、CLEANの能力をはるかに超えて、画像の精度が著しく向上している。
高ダイナミックレンジイメージングのためのResidual-to-Residual DNNシリーズと呼ばれる新しいディープラーニング手法を導入する。
高精度を実現するためのR2D2の能力は、超大型アレイ(VLA)を用いた様々な画像観測環境においてシミュレーションで実証されている。
論文 参考訳(メタデータ) (2024-03-08T16:57:54Z) - CLEANing Cygnus A deep and fast with R2D2 [1.7249361224827533]
電波干渉計による高ダイナミックレンジイメージングのためのResidual-to-Residual DNNシリーズ(R2D2)と呼ばれる、天文学における合成イメージングのための新しいディープラーニングパラダイムが最近提案されている。
本稿では,R2D2 の学習手法により,CLEAN の解像度に取って代わり,最新の最適化アルゴリズムとプラグアンドプレイアルゴリズムの精度をそれぞれ uSARA と AIRI と一致させることが可能であることを示す。
論文 参考訳(メタデータ) (2023-09-06T18:11:09Z) - Learning Detail-Structure Alternative Optimization for Blind
Super-Resolution [69.11604249813304]
そこで我々は,ブラインドSRに先立ってカーネルを曖昧にすることなく,再帰的な詳細構造代替最適化を実現する,有効かつカーネルフリーなネットワークDSSRを提案する。
DSSRでは、細部構造変調モジュール(DSMM)が構築され、画像の詳細と構造の相互作用と協調を利用する。
本手法は既存の手法に対して最先端の手法を実現する。
論文 参考訳(メタデータ) (2022-12-03T14:44:17Z) - Deep network series for large-scale high-dynamic range imaging [2.3759432635713895]
本稿では,大規模高ダイナミックレンジイメージングのための新しい手法を提案する。
ディープニューラルネットワーク(DNN)で訓練されたエンドツーエンドは、ほぼ瞬時に線形逆イメージング問題を解くことができる。
代替のPlug-and-Playアプローチは、高ダイナミックレンジの課題に対処する上で有効であるが、高度に反復的なアルゴリズムに依存している。
論文 参考訳(メタデータ) (2022-10-28T11:13:41Z) - GLEAM: Greedy Learning for Large-Scale Accelerated MRI Reconstruction [50.248694764703714]
アンロールされたニューラルネットワークは、最近最先端の加速MRI再構成を達成した。
これらのネットワークは、物理ベースの一貫性とニューラルネットワークベースの正規化を交互に組み合わせることで、反復最適化アルゴリズムをアンロールする。
我々は,高次元画像設定のための効率的なトレーニング戦略である加速度MRI再構成のためのグレディ・ラーニングを提案する。
論文 参考訳(メタデータ) (2022-07-18T06:01:29Z) - A New Backbone for Hyperspectral Image Reconstruction [90.48427561874402]
3次元ハイパースペクトル画像(HSI)再構成は、スナップショット圧縮画像の逆過程を指す。
空間/スペクトル不変Residual U-Net、すなわちSSI-ResU-Netを提案する。
SSI-ResU-Net は浮動小数点演算の 77.3% 以上で競合する性能を実現する。
論文 参考訳(メタデータ) (2021-08-17T16:20:51Z) - Image Restoration by Deep Projected GSURE [115.57142046076164]
Ill-posed inverse problem は、デブロアリングや超解像など、多くの画像処理アプリケーションに現れる。
本稿では,一般化されたSteinUnbiased Risk Estimator(GSURE)の「投影変換」とCNNによる潜在画像のパラメータ化を含む損失関数の最小化に基づく,新たな画像復元フレームワークを提案する。
論文 参考訳(メタデータ) (2021-02-04T08:52:46Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。