論文の概要: Cellular Automaton With CNN
- arxiv url: http://arxiv.org/abs/2503.02652v1
- Date: Tue, 04 Mar 2025 14:15:47 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-05 19:16:16.052614
- Title: Cellular Automaton With CNN
- Title(参考訳): CNNを用いたセルオートマトン
- Authors: Valery Ashu, Zhisong Liu, Heikki Haario, Andreas Rupp,
- Abstract要約: 本研究では、畳み込みニューラルネットワーク(CNN)を用いて、2次元CAモデルにおけるジャンプパラメータを同定する。
本稿では,CA内のセルの近傍サイズと移動規則を規定するジャンプパラメータを分類するために,CA生成データに基づいて訓練されたカスタムCNNアーキテクチャを提案する。
提案したCNNは、LeNet-5やAlexNetのような既存のアーキテクチャと比較して、競合の精度(89.31)を達成している。
- 参考スコア(独自算出の注目度): 6.263499279406057
- License:
- Abstract: Cellular automata (CA) models are widely used to simulate complex systems with emergent behaviors, but identifying hidden parameters that govern their dynamics remains a significant challenge. This study explores the use of Convolutional Neural Networks (CNN) to identify jump parameters in a two-dimensional CA model. We propose a custom CNN architecture trained on CA-generated data to classify jump parameters, which dictates the neighborhood size and movement rules of cells within the CA. Experiments were conducted across varying domain sizes (25 x 25 to 150 x 150) and CA iterations (0 to 50), demonstrating that the accuracy improves with larger domain sizes, as they provide more spatial information for parameter estimation. Interestingly, while initial CA iterations enhance the performance, increasing the number of iterations beyond a certain threshold does not significantly improve accuracy, suggesting that only specific temporal information is relevant for parameter identification. The proposed CNN achieves competitive accuracy (89.31) compared to established architectures like LeNet-5 and AlexNet, while offering significantly faster inference times, making it suitable for real-time applications. This study highlights the potential of CNNs as a powerful tool for fast and accurate parameter estimation in CA models, paving the way for their use in more complex systems and higher-dimensional domains. Future work will explore the identification of multiple hidden parameters and extend the approach to three-dimensional CA models.
- Abstract(参考訳): セルオートマトン(CA)モデルは、複雑なシステムに創発的な振る舞いをシミュレートするために広く使われているが、それらのダイナミクスを管理する隠されたパラメータを特定することは大きな課題である。
本研究では、畳み込みニューラルネットワーク(CNN)を用いて、2次元CAモデルにおけるジャンプパラメータを同定する。
本稿では,CA内のセルの近傍サイズと移動規則を規定するジャンプパラメータを分類するために,CA生成データに基づいて訓練されたカスタムCNNアーキテクチャを提案する。
様々な領域サイズ (25 x 25 - 150 x 150) とCA繰り返し (0 - 50) で実験を行い、パラメータ推定のための空間情報を提供するため、より大きな領域サイズで精度が向上することを示した。
興味深いことに、初期CAイテレーションでは性能が向上するが、特定のしきい値を超えるイテレーション数の増加は精度を著しく向上させるものではなく、特定の時間情報だけがパラメータ識別に関係していることが示唆されている。
提案したCNNは、LeNet-5やAlexNetのような既存のアーキテクチャと比較して、競合する精度(89.31)を達成している。
本研究では、CAモデルにおける高速かつ正確なパラメータ推定のための強力なツールとしてCNNが持つ可能性を強調し、より複雑なシステムや高次元領域での利用方法を明らかにする。
今後の研究は、複数の隠れパラメータの同定を探求し、アプローチを3次元CAモデルに拡張する予定である。
関連論文リスト
- TENNs-PLEIADES: Building Temporal Kernels with Orthogonal Polynomials [1.1970409518725493]
低レイテンシでオンライン分類と検出を行うために、これらのネットワークをイベントベースのデータで相互接続することに重点を置いている。
我々は3つのイベントベースのベンチマークを実験し、メモリと計算コストを大幅に削減した大きなマージンで3つすべてに対して最先端の結果を得た。
論文 参考訳(メタデータ) (2024-05-20T17:06:24Z) - OA-CNNs: Omni-Adaptive Sparse CNNs for 3D Semantic Segmentation [70.17681136234202]
設計上の違いを再検討し、スパースCNNが達成できることの限界をテストする。
本稿では,このギャップを埋めるために,適応受容場(親和性)と適応関係という2つの重要な要素を提案する。
この調査により、軽量モジュールを統合するネットワークのファミリーであるOmni-Adaptive 3D CNN(OA-CNN)が開発された。
論文 参考訳(メタデータ) (2024-03-21T14:06:38Z) - Dynamic Semantic Compression for CNN Inference in Multi-access Edge
Computing: A Graph Reinforcement Learning-based Autoencoder [82.8833476520429]
部分オフロードにおける効果的な意味抽出と圧縮のための新しい意味圧縮手法であるオートエンコーダベースのCNNアーキテクチャ(AECNN)を提案する。
セマンティックエンコーダでは、CNNのチャネルアテンション機構に基づく特徴圧縮モジュールを導入し、最も情報性の高い特徴を選択して中間データを圧縮する。
セマンティックデコーダでは、受信した圧縮データから学習して中間データを再構築し、精度を向上させる軽量デコーダを設計する。
論文 参考訳(メタデータ) (2024-01-19T15:19:47Z) - Systematic Architectural Design of Scale Transformed Attention Condenser
DNNs via Multi-Scale Class Representational Response Similarity Analysis [93.0013343535411]
マルチスケールクラス表現応答類似性分析(ClassRepSim)と呼ばれる新しいタイプの分析法を提案する。
ResNetスタイルのアーキテクチャにSTACモジュールを追加すると、最大1.6%の精度が向上することを示す。
ClassRepSim分析の結果は、STACモジュールの効果的なパラメータ化を選択するために利用することができ、競争性能が向上する。
論文 参考訳(メタデータ) (2023-06-16T18:29:26Z) - Automatic Machine Learning for Multi-Receiver CNN Technology Classifiers [16.244541005112747]
畳み込みニューラルネットワーク(CNN)は、信号分類のための最も研究されているディープラーニングモデルの1つである。
我々は、複数の同期受信機から収集した生のI/Qサンプルに基づく技術分類に焦点を当てた。
論文 参考訳(メタデータ) (2022-04-28T23:41:38Z) - Towards Enabling Dynamic Convolution Neural Network Inference for Edge
Intelligence [0.0]
エッジインテリジェンスの最近の進歩は、スループットを高め、レイテンシを低減するために、エッジネットワーク上のCNN推論を必要とする。
柔軟性を得るためには、さまざまなモバイルデバイスに対する動的パラメータ割り当ては、事前に定義されたか、オンザフライで定義されたCNNアーキテクチャを実装する必要がある。
本稿では,スケーラブルで動的に分散したCNN推論を高速に設計するためのライブラリベースのアプローチを提案する。
論文 参考訳(メタデータ) (2022-02-18T22:33:42Z) - Efficient Quantum Feature Extraction for CNN-based Learning [5.236201168829204]
本稿では,古典的CNNモデルの識別可能性を高めるために,量子古典的なディープネットワーク構造を提案する。
我々は、より強力な関数近似器であるPQCを構築し、受容場内の特徴を捉えるためにより複雑な構造を持つ。
その結果, アンザッツの表現性が高いモデルでは, 低コストで精度が高いことが判明した。
論文 参考訳(メタデータ) (2022-01-04T17:04:07Z) - When Liebig's Barrel Meets Facial Landmark Detection: A Practical Model [87.25037167380522]
正確で、堅牢で、効率的で、一般化可能で、エンドツーエンドのトレーニングが可能なモデルを提案する。
精度を向上させるために,2つの軽量モジュールを提案する。
DQInitは、インプットからデコーダのクエリを動的に初期化し、複数のデコーダ層を持つものと同じ精度でモデルを実現する。
QAMemは、共有するクエリではなく、それぞれのクエリに別々のメモリ値を割り当てることで、低解像度のフィーチャーマップ上のクエリの識別能力を高めるように設計されている。
論文 参考訳(メタデータ) (2021-05-27T13:51:42Z) - ANNETTE: Accurate Neural Network Execution Time Estimation with Stacked
Models [56.21470608621633]
本稿では,アーキテクチャ検索を対象ハードウェアから切り離すための時間推定フレームワークを提案する。
提案手法は,マイクロカーネルと多層ベンチマークからモデルの集合を抽出し,マッピングとネットワーク実行時間推定のためのスタックモデルを生成する。
生成した混合モデルの推定精度と忠実度, 統計モデルとルーフラインモデル, 評価のための洗練されたルーフラインモデルを比較した。
論文 参考訳(メタデータ) (2021-05-07T11:39:05Z) - An Artificial Intelligence System for Combined Fruit Detection and
Georeferencing, Using RTK-Based Perspective Projection in Drone Imagery [0.0]
この研究では、商業用果樹園の空中ドローン画像からリンゴを検出してカウントする人工知能(AI)システムを紹介します。
計算コストを低減するため、ネットワークの新たな前駆的段階は、個々の木の切り抜き画像に生画像を前処理するように設計されている。
ユニークな地理空間識別子は、遠近法投影モデルを用いてこれらに割り当てられる。
実験により、より高速なR-CNNの文献に見ることのないk平均クラスタリング手法が、校正されたmAPの最も重要な改善をもたらすことが示された。
論文 参考訳(メタデータ) (2021-01-01T23:39:55Z) - Local Grid Rendering Networks for 3D Object Detection in Point Clouds [98.02655863113154]
CNNは強力だが、全点の雲を高密度の3Dグリッドに酸化した後、点データに直接畳み込みを適用するのは計算コストがかかる。
入力点のサブセットの小さな近傍を低解像度の3Dグリッドに独立してレンダリングする,新しい,原理化されたローカルグリッドレンダリング(LGR)演算を提案する。
ScanNetとSUN RGB-Dデータセットを用いた3次元オブジェクト検出のためのLGR-Netを検証する。
論文 参考訳(メタデータ) (2020-07-04T13:57:43Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。