論文の概要: 10K is Enough: An Ultra-Lightweight Binarized Network for Infrared Small-Target Detection
- arxiv url: http://arxiv.org/abs/2503.02662v1
- Date: Tue, 04 Mar 2025 14:25:51 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-05 19:17:43.340198
- Title: 10K is Enough: An Ultra-Lightweight Binarized Network for Infrared Small-Target Detection
- Title(参考訳): 10Kは、赤外線小ターゲット検出のための超軽量バイナリネットワーク
- Authors: Biqiao Xin, Qianchen Mao, Bingshu Wang, Jiangbin Zheng, Yong Zhao, C. L. Philip Chen,
- Abstract要約: 両立赤外小ターゲット検出ネットワーク(BiisNet)を提案する。
BiisNetは二項化畳み込みのコア操作を保存し、完全精度の機能をネットワークの情報フローに統合する。
結果は、BiisNetが他のバイナリアーキテクチャよりも優れているだけでなく、最先端のフル精度モデルの間で強力な競争力を示していることを示している。
- 参考スコア(独自算出の注目度): 48.074211420276605
- License:
- Abstract: The widespread deployment of InfRared Small-Target Detection(IRSTD) algorithms on edge devices necessitates the exploration of model compression techniques. Binary neural networks (BNNs) are distinguished by their exceptional efficiency in model compression. However, the small size of infrared targets introduces stringent precision requirements for the IRSTD task, while the inherent precision loss during binarization presents a significant challenge. To address this, we propose the Binarized Infrared Small-Target Detection Network (BiisNet), which preserves the core operations of binarized convolutions while integrating full-precision features into the network's information flow. Specifically, we propose the Dot-Binary Convolution, which retains fine-grained semantic information in feature maps while still leveraging the binarized convolution operations. In addition, we introduce a smooth and adaptive Dynamic Softsign function, which provides more comprehensive and progressively finer gradient during back-propagation, enhancing model stability and promoting an optimal weight distribution.Experimental results demonstrate that BiisNet not only significantly outperforms other binary architectures but also demonstrates strong competitiveness among state-of-the-art full-precision models.
- Abstract(参考訳): InfRared Small-Target Detection (IRSTD)アルゴリズムをエッジデバイスに広く展開するには,モデル圧縮手法の探索が必要である。
バイナリニューラルネットワーク(BNN)は、モデル圧縮における例外的な効率によって区別される。
しかし、赤外線ターゲットの小型化にはIRSTDタスクの厳密な精度要件が伴うが、バイナライゼーション時の固有精度損失は大きな課題である。
そこで本研究では、二項化畳み込みのコア操作をネットワークの情報フローに完全精度の機能を組み込んで保存するBinarized Infrared Small-Target Detection Network (BiisNet)を提案する。
具体的には、二項化畳み込み操作を引き続き活用しながら、特徴写像に微細な意味情報を保持できるDot-Binary Convolutionを提案する。
さらに、バックプロパゲーション中により包括的かつ漸進的にグラデーションを向上し、モデルの安定性を高め、最適な重量分布を促進できるスムーズで適応的な動的Softsign関数を導入し、実験結果により、BiisNetは他のバイナリアーキテクチャを著しく上回るだけでなく、最先端の完全精度モデルの間で強力な競争力を示す。
関連論文リスト
- BiDense: Binarization for Dense Prediction [62.70804353158387]
BiDenseは、効率よく正確な密度予測タスクのために設計された一般化されたバイナリニューラルネットワーク(BNN)である。
BiDenseは2つの重要なテクニックを取り入れている: 分散適応バイナリー (DAB) とチャネル適応完全精度バイパス (CFB) である。
論文 参考訳(メタデータ) (2024-11-15T16:46:04Z) - BiHRNet: A Binary high-resolution network for Human Pose Estimation [11.250422970707415]
重みとアクティベーションを$pm$1と表現したBiHRNetという2値のポーズ推定器を提案する。
BiHRNetは、バイナリニューラルネットワーク(BNN)を適用することで、少ないコンピューティングリソースを使用しながら、HRNetのキーポイント抽出能力を保っている。
我々は、BiHRNetがMPIIデータセット上で87.9のPCKhを達成することを示す。
論文 参考訳(メタデータ) (2023-11-17T03:01:37Z) - Iterative Soft Shrinkage Learning for Efficient Image Super-Resolution [91.3781512926942]
画像超解像(SR)は、CNNからトランスフォーマーアーキテクチャへの広範なニューラルネットワーク設計を目撃している。
本研究は,市販のネットワーク設計を生かし,基礎となる計算オーバーヘッドを低減するため,超高解像度イテレーションにおけるネットワークプルーニングの可能性について検討する。
本研究では, ランダムネットワークのスパース構造を最適化し, 重要でない重みを小さめに微調整することにより, 反復型軟収縮率(ISS-P)法を提案する。
論文 参考訳(メタデータ) (2023-03-16T21:06:13Z) - BiFSMNv2: Pushing Binary Neural Networks for Keyword Spotting to
Real-Network Performance [54.214426436283134]
Deep-FSMNのようなディープニューラルネットワークはキーワードスポッティング(KWS)アプリケーションのために広く研究されている。
我々は、KWS、すなわちBiFSMNv2のための強力で効率的なバイナリニューラルネットワークを提示し、それを実ネットワーク精度のパフォーマンスにプッシュする。
小型アーキテクチャと最適化されたハードウェアカーネルの利点により、BiFSMNv2は25.1倍のスピードアップと20.2倍のストレージ節約を実現できる。
論文 参考訳(メタデータ) (2022-11-13T18:31:45Z) - BiFSMN: Binary Neural Network for Keyword Spotting [47.46397208920726]
BiFSMNは、KWSのための正確かつ極効率のバイナリニューラルネットワークである。
実世界のエッジハードウェアにおいて,BiFSMNは22.3倍の高速化と15.5倍のストレージ節約を実現可能であることを示す。
論文 参考訳(メタデータ) (2022-02-14T05:16:53Z) - Distribution-sensitive Information Retention for Accurate Binary Neural
Network [49.971345958676196]
本稿では、前向きのアクティベーションと後向きの勾配の情報を保持するために、新しいDIR-Net(Distribution-sensitive Information Retention Network)を提案する。
我々のDIR-Netは、主流かつコンパクトなアーキテクチャの下で、SOTAバイナライゼーションアプローチよりも一貫して優れています。
我々は、実世界のリソース制限されたデバイス上でDIR-Netを行い、ストレージの11.1倍の節約と5.4倍のスピードアップを実現した。
論文 参考訳(メタデータ) (2021-09-25T10:59:39Z) - Physics-aware deep neural networks for surrogate modeling of turbulent
natural convection [0.0]
Rayleigh-B'enard乱流流に対するPINNのサーロゲートモデルの使用を検討する。
標準ピンの精度が低いゾーンであるトレーニング境界に近い正規化として、どのように機能するかを示す。
50億のDNS座標全体のサロゲートの予測精度は、相対的なL2ノルムで[0.3% -- 4%]の範囲のすべてのフロー変数のエラーをもたらします。
論文 参考訳(メタデータ) (2021-03-05T09:48:57Z) - Resolution Adaptive Networks for Efficient Inference [53.04907454606711]
本稿では,低分解能表現が「容易」な入力を分類するのに十分である,という直感に触発された新しいレゾリューション適応ネットワーク(RANet)を提案する。
RANetでは、入力画像はまず、低解像度表現を効率的に抽出する軽量サブネットワークにルーティングされる。
ネットワーク内の高解像度パスは、"ハード"サンプルを認識する能力を維持している。
論文 参考訳(メタデータ) (2020-03-16T16:54:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。