Quantitative Resilience Modeling for Autonomous Cyber Defense
- URL: http://arxiv.org/abs/2503.02780v1
- Date: Tue, 04 Mar 2025 16:52:25 GMT
- Title: Quantitative Resilience Modeling for Autonomous Cyber Defense
- Authors: Xavier Cadet, Simona Boboila, Edward Koh, Peter Chin, Alina Oprea,
- Abstract summary: Cyber resilience is the ability of a system to recover from an attack with minimal impact on system operations.<n>There are no formal definitions of resilience applicable to diverse network topologies and attack patterns.<n>We propose a quantifiable formulation of resilience that considers multiple defender operational goals.
- Score: 7.6078202493877205
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Cyber resilience is the ability of a system to recover from an attack with minimal impact on system operations. However, characterizing a network's resilience under a cyber attack is challenging, as there are no formal definitions of resilience applicable to diverse network topologies and attack patterns. In this work, we propose a quantifiable formulation of resilience that considers multiple defender operational goals, the criticality of various network resources for daily operations, and provides interpretability to security operators about their system's resilience under attack. We evaluate our approach within the CybORG environment, a reinforcement learning (RL) framework for autonomous cyber defense, analyzing trade-offs between resilience, costs, and prioritization of operational goals. Furthermore, we introduce methods to aggregate resilience metrics across time-variable attack patterns and multiple network topologies, comprehensively characterizing system resilience. Using insights gained from our resilience metrics, we design RL autonomous defensive agents and compare them against several heuristic baselines, showing that proactive network hardening techniques and prompt recovery of compromised machines are critical for effective cyber defenses.
Related papers
- An Attentive Graph Agent for Topology-Adaptive Cyber Defence [1.0812794909131096]
We develop a custom version of the Cyber Operations Research Gym (CybORG) environment, encoding network state as a directed graph.<n>We employ a Graph Attention Network (GAT) architecture to process node, edge, and global features, and adapt its output to be compatible with policy gradient methods in reinforcement learning.<n>We demonstrate that GAT defensive policies can be trained using our low-level directed graph observations, even when unexpected connections arise during simulation.
arXiv Detail & Related papers (2025-01-24T18:22:37Z) - Sustainable Self-evolution Adversarial Training [51.25767996364584]
We propose a Sustainable Self-Evolution Adversarial Training (SSEAT) framework for adversarial training defense models.<n>We introduce a continual adversarial defense pipeline to realize learning from various kinds of adversarial examples.<n>We also propose an adversarial data replay module to better select more diverse and key relearning data.
arXiv Detail & Related papers (2024-12-03T08:41:11Z) - Exploring the Adversarial Vulnerabilities of Vision-Language-Action Models in Robotics [68.36528819227641]
This paper systematically quantifies the robustness of VLA-based robotic systems.
We introduce two untargeted attack objectives that leverage spatial foundations to destabilize robotic actions, and a targeted attack objective that manipulates the robotic trajectory.
We design an adversarial patch generation approach that places a small, colorful patch within the camera's view, effectively executing the attack in both digital and physical environments.
arXiv Detail & Related papers (2024-11-18T01:52:20Z) - Entity-based Reinforcement Learning for Autonomous Cyber Defence [0.22499166814992438]
Key challenge for autonomous cyber defence is ensuring a defensive agent's ability to generalise across diverse network topologies and configurations.<n>Standard approaches to deep reinforcement learning expect fixed-size observation and action spaces.<n>In autonomous cyber defence, this makes it hard to develop agents that generalise to environments with network topologies different from those trained on.
arXiv Detail & Related papers (2024-10-23T08:04:12Z) - Mutual-modality Adversarial Attack with Semantic Perturbation [81.66172089175346]
We propose a novel approach that generates adversarial attacks in a mutual-modality optimization scheme.
Our approach outperforms state-of-the-art attack methods and can be readily deployed as a plug-and-play solution.
arXiv Detail & Related papers (2023-12-20T05:06:01Z) - Quantitative Measurement of Cyber Resilience: Modeling and Experimentation [36.19235874144082]
Cyber resilience is the ability of a system to resist and recover from a cyber attack.<n>This paper describes an experimental method and test bed for obtaining resilience-relevant data.
arXiv Detail & Related papers (2023-03-28T21:01:17Z) - Adversarial Attacks and Defenses in Machine Learning-Powered Networks: A
Contemporary Survey [114.17568992164303]
Adrial attacks and defenses in machine learning and deep neural network have been gaining significant attention.
This survey provides a comprehensive overview of the recent advancements in the field of adversarial attack and defense techniques.
New avenues of attack are also explored, including search-based, decision-based, drop-based, and physical-world attacks.
arXiv Detail & Related papers (2023-03-11T04:19:31Z) - Deep Reinforcement Learning for Cyber System Defense under Dynamic
Adversarial Uncertainties [5.78419291062552]
We propose a data-driven deep reinforcement learning framework to learn proactive, context-aware defense countermeasures.
A dynamic defense optimization problem is formulated with multiple protective postures against different types of adversaries.
arXiv Detail & Related papers (2023-02-03T08:33:33Z) - Improving Robustness of Reinforcement Learning for Power System Control
with Adversarial Training [71.7750435554693]
We show that several state-of-the-art RL agents proposed for power system control are vulnerable to adversarial attacks.
Specifically, we use an adversary Markov Decision Process to learn an attack policy, and demonstrate the potency of our attack.
We propose to use adversarial training to increase the robustness of RL agent against attacks and avoid infeasible operational decisions.
arXiv Detail & Related papers (2021-10-18T00:50:34Z) - Model-Agnostic Meta-Attack: Towards Reliable Evaluation of Adversarial
Robustness [53.094682754683255]
We propose a Model-Agnostic Meta-Attack (MAMA) approach to discover stronger attack algorithms automatically.
Our method learns the in adversarial attacks parameterized by a recurrent neural network.
We develop a model-agnostic training algorithm to improve the ability of the learned when attacking unseen defenses.
arXiv Detail & Related papers (2021-10-13T13:54:24Z) - Reinforcement Learning for Feedback-Enabled Cyber Resilience [24.92055101652206]
Cyber resilience provides a new security paradigm that complements inadequate protection with resilience mechanisms.
A Cyber-Resilient Mechanism ( CRM) adapts to the known or zero-day threats and uncertainties in real-time.
We review the literature on RL for cyber resiliency and discuss the cyber-resilient defenses against three major types of vulnerabilities.
arXiv Detail & Related papers (2021-07-02T01:08:45Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.