Quantitative Measurement of Cyber Resilience: Modeling and Experimentation
- URL: http://arxiv.org/abs/2303.16307v3
- Date: Mon, 30 Dec 2024 04:02:48 GMT
- Title: Quantitative Measurement of Cyber Resilience: Modeling and Experimentation
- Authors: Michael J. Weisman, Alexander Kott, Jason E. Ellis, Brian J. Murphy, Travis W. Parker, Sidney Smith, Joachim Vandekerckhove,
- Abstract summary: Cyber resilience is the ability of a system to resist and recover from a cyber attack.
This paper describes an experimental method and test bed for obtaining resilience-relevant data.
- Score: 36.19235874144082
- License:
- Abstract: Cyber resilience is the ability of a system to resist and recover from a cyber attack, thereby restoring the system's functionality. Effective design and development of a cyber resilient system requires experimental methods and tools for quantitative measuring of cyber resilience. This paper describes an experimental method and test bed for obtaining resilience-relevant data as a system (in our case -- a truck) traverses its route, in repeatable, systematic experiments. We model a truck equipped with an autonomous cyber-defense system and which also includes inherent physical resilience features. When attacked by malware, this ensemble of cyber-physical features (i.e., "bonware") strives to resist and recover from the performance degradation caused by the malware's attack. We propose parsimonious mathematical models to aid in quantifying systems' resilience to cyber attacks. Using the models, we identify quantitative characteristics obtainable from experimental data, and show that these characteristics can serve as useful quantitative measures of cyber resilience.
Related papers
- Simulation of Multi-Stage Attack and Defense Mechanisms in Smart Grids [2.0766068042442174]
We introduce a simulation environment that replicates the power grid's infrastructure and communication dynamics.
The framework generates diverse, realistic attack data to train machine learning algorithms for detecting and mitigating cyber threats.
It also provides a controlled, flexible platform to evaluate emerging security technologies, including advanced decision support systems.
arXiv Detail & Related papers (2024-12-09T07:07:17Z) - AI-based Attacker Models for Enhancing Multi-Stage Cyberattack Simulations in Smart Grids Using Co-Simulation Environments [1.4563527353943984]
The transition to smart grids has increased the vulnerability of electrical power systems to advanced cyber threats.
We propose a co-simulation framework that employs an autonomous agent to execute modular cyberattacks.
Our approach offers a flexible, versatile source for data generation, aiding in faster prototyping and reducing development resources and time.
arXiv Detail & Related papers (2024-12-05T08:56:38Z) - Disentangling the Causes of Plasticity Loss in Neural Networks [55.23250269007988]
We show that loss of plasticity can be decomposed into multiple independent mechanisms.
We show that a combination of layer normalization and weight decay is highly effective at maintaining plasticity in a variety of synthetic nonstationary learning tasks.
arXiv Detail & Related papers (2024-02-29T00:02:33Z) - A Variational Autoencoder Framework for Robust, Physics-Informed
Cyberattack Recognition in Industrial Cyber-Physical Systems [2.051548207330147]
We develop a data-driven framework that can be used to detect, diagnose, and localize a type of cyberattack called covert attacks on industrial control systems.
The framework has a hybrid design that combines a variational autoencoder (VAE), a recurrent neural network (RNN), and a Deep Neural Network (DNN)
arXiv Detail & Related papers (2023-10-10T19:07:53Z) - Robustness and Generalization Performance of Deep Learning Models on
Cyber-Physical Systems: A Comparative Study [71.84852429039881]
Investigation focuses on the models' ability to handle a range of perturbations, such as sensor faults and noise.
We test the generalization and transfer learning capabilities of these models by exposing them to out-of-distribution (OOD) samples.
arXiv Detail & Related papers (2023-06-13T12:43:59Z) - A robust statistical framework for cyber-vulnerability prioritisation under partial information in threat intelligence [0.0]
This work introduces a robust statistical framework for quantitative and qualitative reasoning under uncertainty about cyber-vulnerabilities.
We identify a novel accuracy measure suited for rank in variance under partial knowledge of the whole set of existing vulnerabilities.
We discuss the implications of partial knowledge about cyber-vulnerabilities on threat intelligence and decision-making in operational scenarios.
arXiv Detail & Related papers (2023-02-16T15:05:43Z) - Improving robustness of jet tagging algorithms with adversarial training [56.79800815519762]
We investigate the vulnerability of flavor tagging algorithms via application of adversarial attacks.
We present an adversarial training strategy that mitigates the impact of such simulated attacks.
arXiv Detail & Related papers (2022-03-25T19:57:19Z) - Leveraging the structure of dynamical systems for data-driven modeling [111.45324708884813]
We consider the impact of the training set and its structure on the quality of the long-term prediction.
We show how an informed design of the training set, based on invariants of the system and the structure of the underlying attractor, significantly improves the resulting models.
arXiv Detail & Related papers (2021-12-15T20:09:20Z) - Multi Agent System for Machine Learning Under Uncertainty in Cyber
Physical Manufacturing System [78.60415450507706]
Recent advancements in predictive machine learning has led to its application in various use cases in manufacturing.
Most research focused on maximising predictive accuracy without addressing the uncertainty associated with it.
In this paper, we determine the sources of uncertainty in machine learning and establish the success criteria of a machine learning system to function well under uncertainty.
arXiv Detail & Related papers (2021-07-28T10:28:05Z) - CyberLearning: Effectiveness Analysis of Machine Learning Security
Modeling to Detect Cyber-Anomalies and Multi-Attacks [5.672898304129217]
"CyberLearning" is a machine learning-based cybersecurity modeling with correlated-feature selection.
We take into account binary classification model for detecting anomalies, and multi-class classification model for various types of cyber-attacks.
We then present the artificial neural network-based security model considering multiple hidden layers.
arXiv Detail & Related papers (2021-03-28T18:47:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.