論文の概要: Multimodal AI predicts clinical outcomes of drug combinations from preclinical data
- arxiv url: http://arxiv.org/abs/2503.02781v1
- Date: Tue, 04 Mar 2025 16:55:14 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-07 16:00:42.373850
- Title: Multimodal AI predicts clinical outcomes of drug combinations from preclinical data
- Title(参考訳): マルチモーダルAIは、前臨床データから薬物併用の臨床結果を予測する
- Authors: Yepeng Huang, Xiaorui Su, Varun Ullanat, Ivy Liang, Lindsay Clegg, Damilola Olabode, Nicholas Ho, Bino John, Megan Gibbs, Marinka Zitnik,
- Abstract要約: 我々は、構造、経路、細胞生存性、転写データから学習するマルチモーダルAIモデルMADRIGALを紹介する。
953の臨床的結果と21842の化合物にまたがる薬物の組み合わせ効果を予測する。
単一モダリティ法や最先端のモデルより優れており、有害な薬物相互作用を予測する。
- 参考スコア(独自算出の注目度): 7.522186980639714
- License:
- Abstract: Predicting clinical outcomes from preclinical data is essential for identifying safe and effective drug combinations. Current models rely on structural or target-based features to identify high-efficacy, low-toxicity drug combinations. However, these approaches fail to incorporate the multimodal data necessary for accurate, clinically-relevant predictions. Here, we introduce MADRIGAL, a multimodal AI model that learns from structural, pathway, cell viability, and transcriptomic data to predict drug combination effects across 953 clinical outcomes and 21842 compounds, including combinations of approved drugs and novel compounds in development. MADRIGAL uses a transformer bottleneck module to unify preclinical drug data modalities while handling missing data during training and inference--a major challenge in multimodal learning. It outperforms single-modality methods and state-of-the-art models in predicting adverse drug interactions. MADRIGAL performs virtual screening of anticancer drug combinations and supports polypharmacy management for type II diabetes and metabolic dysfunction-associated steatohepatitis (MASH). It identifies transporter-mediated drug interactions. MADRIGAL predicts resmetirom, the first and only FDA-approved drug for MASH, among therapies with the most favorable safety profile. It supports personalized cancer therapy by integrating genomic profiles from cancer patients. Using primary acute myeloid leukemia samples and patient-derived xenograft models, it predicts the efficacy of personalized drug combinations. Integrating MADRIGAL with a large language model allows users to describe clinical outcomes in natural language, improving safety assessment by identifying potential adverse interactions and toxicity risks. MADRIGAL provides a multimodal approach for designing combination therapies with improved predictive accuracy and clinical relevance.
- Abstract(参考訳): 予防的データから臨床結果を予測することは、安全かつ効果的な薬物の組み合わせを特定するのに不可欠である。
現在のモデルは、高効率で低毒性の薬物の組み合わせを特定するために、構造的または標的に基づく特徴に依存している。
しかし、これらのアプローチは、正確で臨床的に関連のある予測に必要なマルチモーダルデータを組み込むことができない。
そこで我々はMADRIGALというマルチモーダルAIモデルを紹介した。MADRIGALは、構造、経路、細胞生存性、転写データから学習し、953の臨床的結果と21842の化合物に対する薬物の組み合わせ効果を予測する。
MADRIGALは、トランスフォーマーボトルネックモジュールを使用して、トレーニングや推論中に欠落したデータを処理しながら、前臨床薬品データモダリティを統一する。
単一モダリティ法や最先端のモデルより優れており、有害な薬物相互作用を予測する。
MADRIGALは抗がん剤の組み合わせの仮想スクリーニングを行い、II型糖尿病とメタボリック障害関連脂肪肝炎(MASH)の多剤耐性管理をサポートする。
トランスポーターを介する薬物相互作用を同定する。
MADRIGALは、最も好ましい安全プロファイルを持つ治療法の中で、MASHのFDA認可薬として初めて、かつ唯一承認されたリスメロムを予測している。
がん患者のゲノムプロファイルを統合することにより、パーソナライズされたがん治療をサポートする。
原発性急性骨髄性白血病と患者由来の異種移植モデルを用いて、パーソナライズされた薬物の組み合わせの有効性を予測する。
大きな言語モデルとMADRIGALを統合することで、ユーザーは自然言語で臨床結果を記述することができ、潜在的に有害な相互作用や毒性リスクを特定することで安全性の評価を改善することができる。
MADRIGALは、予測精度と臨床関連性を改善した組み合わせ療法を設計するためのマルチモーダルなアプローチを提供する。
関連論文リスト
- Continually Evolved Multimodal Foundation Models for Cancer Prognosis [50.43145292874533]
がん予後は、患者の予後と生存率を予測する重要なタスクである。
これまでの研究では、臨床ノート、医療画像、ゲノムデータなどの多様なデータモダリティを統合し、補完的な情報を活用している。
既存のアプローチには2つの大きな制限がある。まず、各病院の患者記録など、各種のトレーニングに新しく到着したデータを組み込むことに苦慮する。
第二に、ほとんどのマルチモーダル統合手法は単純化された結合やタスク固有のパイプラインに依存しており、モダリティ間の複雑な相互依存を捉えることができない。
論文 参考訳(メタデータ) (2025-01-30T06:49:57Z) - KITE-DDI: A Knowledge graph Integrated Transformer Model for accurately predicting Drug-Drug Interaction Events from Drug SMILES and Biomedical Knowledge Graph [0.11049608786515838]
薬物と薬物の相互作用(DDI)は、身体の損傷や死に至ることがある。
DDIイベントを予測するための現代の研究は、バイオメディカル知識グラフ(KG)または薬物SMILESの情報に依存する。
本研究では,エンドツーエンドの完全自動機械学習パイプラインを生成するために,KG統合トランスフォーマーアーキテクチャを提案する。
論文 参考訳(メタデータ) (2024-12-08T00:49:57Z) - Causal machine learning for predicting treatment outcomes [75.13093479526151]
Causal Machine Learning (ML)は、治療結果を予測するフレキシブルでデータ駆動の方法を提供する。
因果MLの主な利点は、個別化された治療効果を推定できることである。
論文 参考訳(メタデータ) (2024-10-11T12:39:08Z) - A Cross-Field Fusion Strategy for Drug-Target Interaction Prediction [85.2792480737546]
既存の方法は、DTI予測中にグローバルなタンパク質情報を利用することができない。
ローカルおよびグローバルなタンパク質情報を取得するために、クロスフィールド情報融合戦略が採用されている。
SiamDTI予測法は、新規薬物や標的に対する他の最先端(SOTA)法よりも高い精度を達成する。
論文 参考訳(メタデータ) (2024-05-23T13:25:20Z) - CT-ADE: An Evaluation Benchmark for Adverse Drug Event Prediction from Clinical Trial Results [0.10051474951635876]
副作用薬物イベント(ADE)は臨床研究に大きな影響を与え、多くの臨床試験失敗を引き起こした。
この取り組みを支援するために,単薬理治療におけるADEのマルチラベル予測モデルであるCT-ADEを導入する。
CT-ADEは、臨床試験から抽出された168,984種類の薬物とADEのペアを含む2,497種類のユニークな薬物のデータを統合する。
論文 参考訳(メタデータ) (2024-04-19T12:04:32Z) - Enhancing drug and cell line representations via contrastive learning
for improved anti-cancer drug prioritization [0.7070726553564699]
本稿では,学習薬物や細胞株の表現を改善するために,対照的な学習法を提案する。
我々の学習した表現は、予測を行う際、薬物および細胞由来の特徴によりバランスがとれることが分かりました。
論文 参考訳(メタデータ) (2023-10-20T04:18:47Z) - Drug Interaction Vectors Neural Network: DrIVeNN [0.7624669864625037]
ポリファーマシー(英: Poly Pharmacy)とは、複数の薬物を同時に併用して単一の疾患を治療することである。
ポリファーマシーに関連する多くの重篤なADEは、薬物の使用後にのみ知られるようになる。
臨床試験において、あらゆる可能な薬物の組み合わせをテストすることは不可能である。
論文 参考訳(メタデータ) (2023-08-26T14:24:41Z) - Drug Synergistic Combinations Predictions via Large-Scale Pre-Training
and Graph Structure Learning [82.93806087715507]
薬物併用療法は、より有効で安全性の低い疾患治療のための確立された戦略である。
ディープラーニングモデルは、シナジスティックな組み合わせを発見する効率的な方法として登場した。
我々のフレームワークは、他のディープラーニングベースの手法と比較して最先端の結果を達成する。
論文 参考訳(メタデータ) (2023-01-14T15:07:43Z) - SSM-DTA: Breaking the Barriers of Data Scarcity in Drug-Target Affinity
Prediction [127.43571146741984]
薬物標的親和性(DTA)は、早期の薬物発見において極めて重要である。
湿式実験は依然として最も信頼性の高い方法であるが、時間と資源が集中している。
既存の手法は主に、データ不足の問題に適切に対処することなく、利用可能なDTAデータに基づく技術開発に重点を置いている。
SSM-DTAフレームワークについて述べる。
論文 参考訳(メタデータ) (2022-06-20T14:53:25Z) - Learning for Dose Allocation in Adaptive Clinical Trials with Safety
Constraints [84.09488581365484]
新しい化合物の有効性と毒性の関係がより複雑になるにつれて、第1相線量測定試験はますます困難になっている。
最も一般的に使われている方法は、毒性事象のみから学習することで、最大許容量(MTD)を特定することである。
本稿では, 毒性安全性の制約を高い確率で満たしつつ, 累積効果を最大化することを目的とした, 適応型臨床試験手法を提案する。
論文 参考訳(メタデータ) (2020-06-09T03:06:45Z) - Reinforcement learning and Bayesian data assimilation for model-informed
precision dosing in oncology [0.0]
現在の戦略はモデルインフォームドドッキングテーブルで構成されている。
ベイジアンデータ同化と/または強化学習を併用したMIPDのための新しい3つのアプローチを提案する。
これらのアプローチは、致命的グレード4と治療下グレード0のニュートロピーの発生を著しく減少させる可能性がある。
論文 参考訳(メタデータ) (2020-06-01T16:38:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。