論文の概要: SeqFusion: Sequential Fusion of Pre-Trained Models for Zero-Shot Time-Series Forecasting
- arxiv url: http://arxiv.org/abs/2503.02836v1
- Date: Tue, 04 Mar 2025 17:59:17 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-05 19:22:37.630002
- Title: SeqFusion: Sequential Fusion of Pre-Trained Models for Zero-Shot Time-Series Forecasting
- Title(参考訳): SeqFusion:ゼロショット時系列予測のための事前学習モデルの逐次融合
- Authors: Ting-Ji Huang, Xu-Yang Chen, Han-Jia Ye,
- Abstract要約: SeqFusionは、ゼロショット予測のために、さまざまなトレーニング済みモデルを逐次収集およびヒューズする新しいフレームワークである。
対象時系列の特定の時間特性に基づいて、SeqFusionは、プレコンパイルされたPTMのバッチから最も適したPTMを選択する。
実験により、セクフュージョンは最先端の手法と比較してゼロショット予測において競合精度を達成することが示された。
- 参考スコア(独自算出の注目度): 26.492352596521382
- License:
- Abstract: Unlike traditional time-series forecasting methods that require extensive in-task data for training, zero-shot forecasting can directly predict future values given a target time series without additional training data. Current zero-shot approaches primarily rely on pre-trained generalized models, with their performance often depending on the variety and relevance of the pre-training data, which can raise privacy concerns. Instead of collecting diverse pre-training data, we introduce SeqFusion in this work, a novel framework that collects and fuses diverse pre-trained models (PTMs) sequentially for zero-shot forecasting. Based on the specific temporal characteristics of the target time series, SeqFusion selects the most suitable PTMs from a batch of pre-collected PTMs, performs sequential predictions, and fuses all the predictions while using minimal data to protect privacy. Each of these PTMs specializes in different temporal patterns and forecasting tasks, allowing SeqFusion to select by measuring distances in a shared representation space of the target time series with each PTM. Experiments demonstrate that SeqFusion achieves competitive accuracy in zero-shot forecasting compared to state-of-the-art methods.
- Abstract(参考訳): トレーニング用に広範囲なタスク内データを必要とする従来の時系列予測方法とは異なり、ゼロショット予測は、追加のトレーニングデータなしでターゲット時系列に与えられた将来の値を直接予測することができる。
現在のゼロショットアプローチは、主にトレーニング済みの一般モデルに依存しており、そのパフォーマンスはトレーニング済みデータの多様性と関連性に依存することが多く、プライバシの懸念を生じさせる可能性がある。
多様な事前学習データを集める代わりに、ゼロショット予測のために多様な事前学習モデル(PTM)を逐次収集・融合する新しいフレームワークであるSeqFusionを紹介します。
ターゲット時系列の特定の時間的特性に基づいて、SeqFusionは、プレコンパイルされたPTMのバッチから最も適切なPTMを選択し、シーケンシャルな予測を行い、プライバシーを保護するために最小限のデータを使用しながら全ての予測を融合する。
これらのPTMはそれぞれ異なる時間パターンと予測タスクを専門とし、ターゲット時系列の共有表現空間における距離を計測することでSeqFusionが選択できる。
実験により、セクフュージョンは最先端の手法と比較してゼロショット予測において競合精度を達成することが示された。
関連論文リスト
- Sundial: A Family of Highly Capable Time Series Foundation Models [64.6322079384575]
Sundialはネイティブでフレキシブルでスケーラブルな時系列基盤モデルのファミリーです。
本モデルでは,事前分布を指定せずに事前学習を行い,複数の予測予測を生成できる。
TimeFlow Loss を通じてモード崩壊を緩和することにより、TimeBench 上で Sundial モデルのファミリーを事前訓練し、前例のないモデルキャパシティと一般化性能を示す。
論文 参考訳(メタデータ) (2025-02-02T14:52:50Z) - Tackling Data Heterogeneity in Federated Time Series Forecasting [61.021413959988216]
時系列予測は、エネルギー消費予測、病気の伝染モニタリング、天気予報など、様々な実世界の応用において重要な役割を果たす。
既存のほとんどのメソッドは、分散デバイスから中央クラウドサーバに大量のデータを収集する、集中的なトレーニングパラダイムに依存しています。
本稿では,情報合成データを補助的知識キャリアとして生成することにより,データの均一性に対処する新しいフレームワークであるFed-TRENDを提案する。
論文 参考訳(メタデータ) (2024-11-24T04:56:45Z) - DAM: Towards A Foundation Model for Time Series Forecasting [0.8231118867997028]
本稿では,ランダムにサンプリングされた履歴を抽出し,時間連続関数として調整可能な基底組成を出力するニューラルモデルを提案する。
1)長い尾の分布からランダムにサンプリングされたヒストリーを使用する柔軟なアプローチ、(2)これらの活発にサンプリングされたヒストリーに基づいてトレーニングされたトランスフォーマーバックボーンを表現的出力として、(3)時間の連続関数の基底係数を含む。
論文 参考訳(メタデータ) (2024-07-25T08:48:07Z) - Unified Training of Universal Time Series Forecasting Transformers [104.56318980466742]
マスク型ユニバーサル時系列予測変換器(モイライ)について述べる。
Moiraiは、新たに導入された大規模オープンタイムシリーズアーカイブ(LOTSA)で訓練されており、9つのドメインで27億以上の観測が行われた。
Moiraiは、フルショットモデルと比較してゼロショットの予測器として、競争力や優れたパフォーマンスを達成する。
論文 参考訳(メタデータ) (2024-02-04T20:00:45Z) - TimeSiam: A Pre-Training Framework for Siamese Time-Series Modeling [67.02157180089573]
時系列事前トレーニングは、最近、ラベルのコストを削減し、下流の様々なタスクに利益をもたらす可能性があるとして、広く注目を集めている。
本稿では,シームズネットワークに基づく時系列の簡易かつ効果的な自己教師型事前学習フレームワークとしてTimeSiamを提案する。
論文 参考訳(メタデータ) (2024-02-04T13:10:51Z) - ForecastPFN: Synthetically-Trained Zero-Shot Forecasting [16.12148632541671]
ForecastPFNは、新しい合成データ分布に基づいて純粋に訓練された最初のゼロショット予測モデルである。
ForecastPFNによるゼロショット予測は、最先端の予測手法よりも正確で高速であることを示す。
論文 参考訳(メタデータ) (2023-11-03T14:17:11Z) - When Rigidity Hurts: Soft Consistency Regularization for Probabilistic
Hierarchical Time Series Forecasting [69.30930115236228]
確率的階層的時系列予測は時系列予測の重要な変種である。
ほとんどの手法は点予測に焦点を絞っており、確率的確率分布を十分に調整していない。
ProFHiTは,階層全体の予測分布を共同でモデル化する完全確率的階層予測モデルである。
論文 参考訳(メタデータ) (2023-10-17T20:30:16Z) - When Rigidity Hurts: Soft Consistency Regularization for Probabilistic
Hierarchical Time Series Forecasting [69.30930115236228]
確率的階層的時系列予測は時系列予測の重要な変種である。
ほとんどの手法は点予測に焦点を絞っており、確率的確率分布を十分に調整していない。
ProFHiTは,階層全体の予測分布を共同でモデル化する完全確率的階層予測モデルである。
論文 参考訳(メタデータ) (2022-06-16T06:13:53Z) - Optimal Latent Space Forecasting for Large Collections of Short Time
Series Using Temporal Matrix Factorization [0.0]
複数の手法を評価し、それらの方法の1つを選択することや、最良の予測を生成するためのアンサンブルを選択するのが一般的である。
本稿では,低ランク時間行列係数化と潜在時系列上での最適モデル選択を組み合わせることで,短時間の高次元時系列データを予測するためのフレームワークを提案する。
論文 参考訳(メタデータ) (2021-12-15T11:39:21Z) - Feature-weighted Stacking for Nonseasonal Time Series Forecasts: A Case
Study of the COVID-19 Epidemic Curves [0.0]
本研究では,非シーズン時間帯での利用可能性について,予測におけるアンサンブル手法について検討する。
予備予測段階における予測能力を証明する2つの予測モデルと2つのメタ機能からなる重畳アンサンブルを用いて遅延データ融合を提案する。
論文 参考訳(メタデータ) (2021-08-19T14:44:46Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。