論文の概要: Gait Recognition Based on Tiny ML and IMU Sensors
- arxiv url: http://arxiv.org/abs/2507.18627v1
- Date: Thu, 24 Jul 2025 17:59:08 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-25 15:10:44.235332
- Title: Gait Recognition Based on Tiny ML and IMU Sensors
- Title(参考訳): Tiny MLとIMUセンサを用いた歩行認識
- Authors: Jiahang Zhang, Mingtong Chen, Zhengbao Yang,
- Abstract要約: 本稿では,Tiny Machine Learning (Tiny ML) とInertial Measurement Unit (IMU) センサを用いた歩行認識システムの開発について述べる。
このシステムはXIAO-nRF52840 SenseマイクロコントローラとLSM6DS3 IMUセンサーを利用して、4つの異なるアクティビティから加速度と角速度を含む動きデータをキャプチャする。
収集されたデータはエッジAIプラットフォームであるEdge Impulseを通じて処理され、リアルタイムのアクティビティ分類のためにマイクロコントローラに直接デプロイ可能なマシンラーニングモデルのトレーニングが可能になる。
- 参考スコア(独自算出の注目度): 1.2289361708127877
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This project presents the development of a gait recognition system using Tiny Machine Learning (Tiny ML) and Inertial Measurement Unit (IMU) sensors. The system leverages the XIAO-nRF52840 Sense microcontroller and the LSM6DS3 IMU sensor to capture motion data, including acceleration and angular velocity, from four distinct activities: walking, stationary, going upstairs, and going downstairs. The data collected is processed through Edge Impulse, an edge AI platform, which enables the training of machine learning models that can be deployed directly onto the microcontroller for real-time activity classification.The data preprocessing step involves extracting relevant features from the raw sensor data using techniques such as sliding windows and data normalization, followed by training a Deep Neural Network (DNN) classifier for activity recognition. The model achieves over 80% accuracy on a test dataset, demonstrating its ability to classify the four activities effectively. Additionally, the platform enables anomaly detection, further enhancing the robustness of the system. The integration of Tiny ML ensures low-power operation, making it suitable for battery-powered or energy-harvesting devices.
- Abstract(参考訳): 本稿では,Tiny Machine Learning (Tiny ML) とInertial Measurement Unit (IMU) センサを用いた歩行認識システムの開発について述べる。
このシステムはXIAO-nRF52840 SenseマイクロコントローラとLSM6DS3 IMUセンサーを利用して、加速度と角速度を含む動きデータを4つの異なるアクティビティ(歩行、静止、階上、階下)から捉える。
収集されたデータはエッジAIプラットフォームであるEdge Impulseを通じて処理される。これは、リアルタイムなアクティビティ分類のためにマイクロコントローラに直接デプロイ可能な機械学習モデルのトレーニングを可能にする。データ前処理ステップは、スライディングウィンドウやデータ正規化といった技術を使用して、生センサデータから関連する特徴を抽出し、次にアクティビティ認識のためのディープニューラルネットワーク(DNN)分類器をトレーニングする。
このモデルはテストデータセット上で80%以上の精度を実現し、4つのアクティビティを効果的に分類する能力を示している。
さらに、このプラットフォームは異常検出を可能にし、システムの堅牢性をさらに強化する。
Tiny MLの統合により、低消費電力動作が保証され、バッテリー駆動または省エネデバイスに適合する。
関連論文リスト
- CADDI: An in-Class Activity Detection Dataset using IMU data from low-cost sensors [3.3860149185538613]
安価なIMUセンサを用いたクラス内アクティビティ検出のための新しいデータセットを提案する。
データセットは、典型的な教室のシナリオで12人の参加者が実行した、瞬間的および連続的な19の多様なアクティビティで構成されている。
加速度計、ジャイロスコープ、回転ベクトルデータ、および同期ステレオ画像を含み、センサーと視覚データを用いたマルチモーダルアルゴリズムを開発するための包括的なリソースを提供する。
論文 参考訳(メタデータ) (2025-03-04T18:29:57Z) - Scaling Wearable Foundation Models [54.93979158708164]
センサ基礎モデルのスケーリング特性を計算,データ,モデルサイズにわたって検討する。
最大4000万時間分の心拍数、心拍変動、心電図活動、加速度計、皮膚温度、および1分間のデータを用いて、私たちはLSMを作成します。
この結果から,LSMのスケーリング法則は,時間とセンサの両面において,計算や外挿などのタスクに対して確立されている。
論文 参考訳(メタデータ) (2024-10-17T15:08:21Z) - An Automated Approach to Collecting and Labeling Time Series Data for Event Detection Using Elastic Node Hardware [18.15754187896287]
本稿では,センサデータをIoTデバイス上で直接ラベル付けする新しい組込みシステムを提案する。
本稿では,各種センサデータのキャプチャとラベル付けを効率化する,特殊なラベル付けセンサを備えたハードウェアとソフトウェアの統合ソリューションを提案する。
論文 参考訳(メタデータ) (2024-07-06T15:19:16Z) - HARMamba: Efficient and Lightweight Wearable Sensor Human Activity Recognition Based on Bidirectional Mamba [7.412537185607976]
ウェアラブルセンサーによる人間の活動認識(HAR)は、活動知覚において重要な研究領域である。
HARMambaは、選択的な双方向状態空間モデルとハードウェア対応設計を組み合わせた、革新的な軽量で多用途なHARアーキテクチャである。
HarMambaは現代の最先端フレームワークより優れており、計算とメモリの要求を大幅に削減し、同等またはより良い精度を提供する。
論文 参考訳(メタデータ) (2024-03-29T13:57:46Z) - A Plug-in Tiny AI Module for Intelligent and Selective Sensor Data
Transmission [10.174575604689391]
本稿では、インテリジェントなデータ伝送機能を備えたセンシングフレームワークを実現するための新しいセンシングモジュールを提案する。
センサの近くに置かれる高効率機械学習モデルを統合する。
このモデルは,無関係な情報を破棄しながら,貴重なデータのみを送信するセンサシステムに対して,迅速なフィードバックを提供する。
論文 参考訳(メタデータ) (2024-02-03T05:41:39Z) - DiffusionEngine: Diffusion Model is Scalable Data Engine for Object
Detection [41.436817746749384]
Diffusion Modelはオブジェクト検出のためのスケーラブルなデータエンジンである。
DiffusionEngine(DE)は、高品質な検出指向のトレーニングペアを単一のステージで提供する。
論文 参考訳(メタデータ) (2023-09-07T17:55:01Z) - UnLoc: A Universal Localization Method for Autonomous Vehicles using
LiDAR, Radar and/or Camera Input [51.150605800173366]
UnLocは、全ての気象条件におけるマルチセンサー入力によるローカライズのための、新しい統一型ニューラルネットワークアプローチである。
本手法は,Oxford Radar RobotCar,Apollo SouthBay,Perth-WAの各データセットで広く評価されている。
論文 参考訳(メタデータ) (2023-07-03T04:10:55Z) - Incremental Online Learning Algorithms Comparison for Gesture and Visual
Smart Sensors [68.8204255655161]
本稿では,加速度センサデータに基づくジェスチャー認識と画像分類の2つの実例として,最先端の4つのアルゴリズムを比較した。
以上の結果から,これらのシステムの信頼性と小型メモリMCUへのデプロイの可能性が確認された。
論文 参考訳(メタデータ) (2022-09-01T17:05:20Z) - Learning-Based UE Classification in Millimeter-Wave Cellular Systems
With Mobility [67.81523988596841]
ミリ波携帯電話通信では、送信機と受信機のビームのアライメントを可能にするビームフォーミング手順が必要である。
効率的なビームトラッキングでは、トラフィックと移動パターンに応じてユーザーを分類することが有利である。
これまでの研究は、機械学習に基づくUE分類の効率的な方法を示してきた。
論文 参考訳(メタデータ) (2021-09-13T12:00:45Z) - Moving Object Classification with a Sub-6 GHz Massive MIMO Array using
Real Data [64.48836187884325]
無線信号を用いた屋内環境における各種活動の分類は,様々な応用の新たな技術である。
本論文では,屋内環境におけるマルチインプット・マルチアウトプット(MIMO)システムから,機械学習を用いて移動物体の分類を解析する。
論文 参考訳(メタデータ) (2021-02-09T15:48:35Z) - Yet it moves: Learning from Generic Motions to Generate IMU data from
YouTube videos [5.008235182488304]
我々は、加速度計とジャイロ信号の両方の一般的な動きの回帰モデルをトレーニングして、合成IMUデータを生成する方法を示す。
我々は、回帰モデルにより生成されたシミュレーションデータに基づいてトレーニングされたシステムが、実センサデータに基づいてトレーニングされたシステムのF1スコアの平均の約10%に到達できることを実証した。
論文 参考訳(メタデータ) (2020-11-23T18:16:46Z) - Machine learning approaches for identifying prey handling activity in
otariid pinnipeds [12.814241588031685]
本稿では,アザラシの捕食行動の同定に焦点をあてる。
考慮すべきデータは、アザラシに直接取り付けられたデバイスによって収集された3D加速度計と深度センサーのストリームである。
機械学習(ML)アルゴリズムに基づく自動モデルを提案する。
論文 参考訳(メタデータ) (2020-02-10T15:30:08Z) - Deep Learning based Pedestrian Inertial Navigation: Methods, Dataset and
On-Device Inference [49.88536971774444]
慣性測定ユニット(IMU)は小型で安価でエネルギー効率が良く、スマートデバイスや移動ロボットに広く使われている。
正確で信頼性の高い歩行者ナビゲーションをサポートするために慣性データをエクスプロイトすることは、新しいインターネット・オブ・シングス・アプリケーションやサービスにとって重要なコンポーネントである。
我々は、深層学習に基づく慣性ナビゲーション研究のための最初の公開データセットであるOxIOD(OxIOD)を提示、リリースする。
論文 参考訳(メタデータ) (2020-01-13T04:41:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。