論文の概要: Deepfake-Eval-2024: A Multi-Modal In-the-Wild Benchmark of Deepfakes Circulated in 2024
- arxiv url: http://arxiv.org/abs/2503.02857v3
- Date: Mon, 24 Mar 2025 20:46:15 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-26 16:53:04.972453
- Title: Deepfake-Eval-2024: A Multi-Modal In-the-Wild Benchmark of Deepfakes Circulated in 2024
- Title(参考訳): Deepfake-Eval-2024:2024年に循環したDeepfakesのマルチモーダルIn-the-Wildベンチマーク
- Authors: Nuria Alina Chandra, Ryan Murtfeldt, Lin Qiu, Arnab Karmakar, Hannah Lee, Emmanuel Tanumihardja, Kevin Farhat, Ben Caffee, Sejin Paik, Changyeon Lee, Jongwook Choi, Aerin Kim, Oren Etzioni,
- Abstract要約: 我々は,2024年にソーシャルメディアとディープフェイク検出プラットフォームユーザから収集されたワイヤ内ディープフェイクからなる新しいディープフェイク検出ベンチマークであるDeepfake-Eval-2024を紹介する。
ベンチマークには、52の異なる言語で88の異なるウェブサイトからさまざまなメディアコンテンツが含まれている。
その結果,Deepfake-Eval-2024で評価すると,オープンソースのDeepfake検出モデルの性能は急激に低下することがわかった。
- 参考スコア(独自算出の注目度): 6.865766644176186
- License:
- Abstract: In the age of increasingly realistic generative AI, robust deepfake detection is essential for mitigating fraud and disinformation. While many deepfake detectors report high accuracy on academic datasets, we show that these academic benchmarks are out of date and not representative of real-world deepfakes. We introduce Deepfake-Eval-2024, a new deepfake detection benchmark consisting of in-the-wild deepfakes collected from social media and deepfake detection platform users in 2024. Deepfake-Eval-2024 consists of 45 hours of videos, 56.5 hours of audio, and 1,975 images, encompassing the latest manipulation technologies. The benchmark contains diverse media content from 88 different websites in 52 different languages. We find that the performance of open-source state-of-the-art deepfake detection models drops precipitously when evaluated on Deepfake-Eval-2024, with AUC decreasing by 50% for video, 48% for audio, and 45% for image models compared to previous benchmarks. We also evaluate commercial deepfake detection models and models finetuned on Deepfake-Eval-2024, and find that they have superior performance to off-the-shelf open-source models, but do not yet reach the accuracy of deepfake forensic analysts. The dataset is available at https://github.com/nuriachandra/Deepfake-Eval-2024.
- Abstract(参考訳): ますます現実的な生成AIの時代において、詐欺や偽情報の緩和には堅牢なディープフェイク検出が不可欠である。
多くのディープフェイク検出器は学術的なデータセットに高い精度を報告しているが、これらのベンチマークは時代遅れであり、現実世界のディープフェイクを代表していない。
我々は,2024年にソーシャルメディアとディープフェイク検出プラットフォームユーザから収集されたワイヤ内ディープフェイクからなる新しいディープフェイク検出ベンチマークであるDeepfake-Eval-2024を紹介する。
Deepfake-Eval-2024は45時間のビデオ、56.5時間のオーディオ、1,975のイメージで構成され、最新の操作技術を含んでいる。
ベンチマークには、52の異なる言語で88の異なるウェブサイトからさまざまなメディアコンテンツが含まれている。
その結果、Deepfake-Eval-2024で評価すると、オープンソースのDeepfake検出モデルの性能は急激に低下し、AUCはビデオで50%、オーディオで48%、画像で45%低下した。
また,Deepfake-Eval-2024で微調整された市販のディープフェイク検出モデルやモデルの評価を行い,市販のオープンソースモデルよりも優れた性能を示した。
データセットはhttps://github.com/nuriachandra/Deepfake-Eval-2024で公開されている。
関連論文リスト
- Deepfake Media Generation and Detection in the Generative AI Era: A Survey and Outlook [101.30779332427217]
本研究は,近年の現場開発を含むディープフェイク発生・検出技術について調査する。
偽コンテンツの変更や生成に使用する手順に従って,様々な種類のディープフェイクを識別する。
我々は,分布外コンテンツに基づくディープフェイク検出のための新しいマルチモーダル・ベンチマークを開発した。
論文 参考訳(メタデータ) (2024-11-29T08:29:25Z) - DF40: Toward Next-Generation Deepfake Detection [62.073997142001424]
既存の研究は、ある特定のデータセットで検出器をトレーニングし、他の一般的なディープフェイクデータセットでテストすることで、トップノーチ検出アルゴリズムとモデルを識別する。
しかし、これらの「勝者」は現実の世界に潜む無数の現実的で多様なディープフェイクに取り組むために真に応用できるのだろうか?
我々は,40の異なるディープフェイク技術からなるDF40という,高度に多様なディープフェイク検出データセットを構築した。
論文 参考訳(メタデータ) (2024-06-19T12:35:02Z) - Leveraging Deep Learning Approaches for Deepfake Detection: A Review [0.0]
ディープフェイク(Deepfakes)は、AIによって生成されたメディアであり、実際のメディアから切り離すことが難しい。
本稿では,コスト効率のよいモデルを実現するために,様々な手法を検討することを目的とする。
論文 参考訳(メタデータ) (2023-04-04T16:04:42Z) - DeePhy: On Deepfake Phylogeny [58.01631614114075]
DeePhyは、新しいDeepfake Phylogenyデータセットである。
6つのディープフェイク検出アルゴリズムを用いて,DeePhyデータセットのベンチマークを示す。
論文 参考訳(メタデータ) (2022-09-19T15:30:33Z) - A Continual Deepfake Detection Benchmark: Dataset, Methods, and
Essentials [97.69553832500547]
本稿では, 既知の生成モデルと未知の生成モデルの両方から, 新たなディープフェイク集合に対する連続的なディープフェイク検出ベンチマーク(CDDB)を提案する。
本研究では,連続的なディープラーニング検出問題に対して,連続的な視覚認識で一般的に使用される多クラス漸進学習手法を適応するために,複数のアプローチを利用する。
論文 参考訳(メタデータ) (2022-05-11T13:07:19Z) - Model Attribution of Face-swap Deepfake Videos [39.771800841412414]
まず、いくつかのAutoencoderモデルに基づいて、DeepFakes from Different Models (DFDM)を用いた新しいデータセットを導入する。
具体的には、エンコーダ、デコーダ、中間層、入力解像度、圧縮比の5つの世代モデルを用いて、合計6450のDeepfakeビデオを生成する。
我々は,Deepfakesモデルの属性を多クラス分類タスクとして捉え,Deepfakes間の差異を探索するための空間的・時間的注意に基づく手法を提案する。
論文 参考訳(メタデータ) (2022-02-25T20:05:18Z) - An Experimental Evaluation on Deepfake Detection using Deep Face
Recognition [0.0]
ディープラーニングは、ディープフェイク(deepfakes)として知られる非常に現実的なフェイクコンテンツを生み出した。
現在のディープフェイク検出法のほとんどは、2クラス畳み込みニューラルネットワーク(CNN)を用いた偽のイメージやビデオとを区別する二項分類問題と見なされている。
本稿では,異なる損失関数とディープフェイク生成技術を用いて,ディープフェイク識別におけるディープフェイク認識の有効性を徹底的に評価する。
論文 参考訳(メタデータ) (2021-10-04T18:02:56Z) - TAR: Generalized Forensic Framework to Detect Deepfakes using Weakly
Supervised Learning [17.40885531847159]
ディープフェイクは重要な社会問題となり、それらを検出することが非常に重要です。
本研究では,異なる種類のディープフェイクを同時に検出する実用的なデジタル鑑識ツールを提案する。
レジデンシャルブロックを用いた自動エンコーダベースの検出モデルを開発し、異なる種類のディープフェイクを同時に検出する転送学習を順次実施します。
論文 参考訳(メタデータ) (2021-05-13T07:31:08Z) - Adversarially robust deepfake media detection using fused convolutional
neural network predictions [79.00202519223662]
現在のディープフェイク検出システムは、目に見えないデータと戦っている。
ビデオから抽出した偽画像と実画像の分類には,CNN(Deep Convolutional Neural Network)モデルが3種類採用されている。
提案手法は96.5%の精度で最先端のモデルより優れている。
論文 参考訳(メタデータ) (2021-02-11T11:28:00Z) - WildDeepfake: A Challenging Real-World Dataset for Deepfake Detection [82.42495493102805]
我々は,インターネットから完全に収集された707のディープフェイクビデオから抽出された7,314の顔シーケンスからなる新しいデータセットWildDeepfakeを紹介した。
既存のWildDeepfakeデータセットと我々のWildDeepfakeデータセットのベースライン検出ネットワークを体系的に評価し、WildDeepfakeが実際により困難なデータセットであることを示す。
論文 参考訳(メタデータ) (2021-01-05T11:10:32Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。