SPIDER: A Comprehensive Multi-Organ Supervised Pathology Dataset and Baseline Models
- URL: http://arxiv.org/abs/2503.02876v2
- Date: Mon, 07 Apr 2025 12:20:28 GMT
- Title: SPIDER: A Comprehensive Multi-Organ Supervised Pathology Dataset and Baseline Models
- Authors: Dmitry Nechaev, Alexey Pchelnikov, Ekaterina Ivanova,
- Abstract summary: SPIDER is the largest publicly available patch-level dataset covering multiple organ types, including Skin, Colorectal, Thorax, and Breast.<n>We present baseline models trained on SPIDER using the Hibou-L foundation model as a feature extractor combined with an attention-based classification head.<n>The models achieve state-of-the-art performance across multiple tissue categories and serve as strong benchmarks for future digital pathology research.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Advancing AI in computational pathology requires large, high-quality, and diverse datasets, yet existing public datasets are often limited in organ diversity, class coverage, or annotation quality. To bridge this gap, we introduce SPIDER (Supervised Pathology Image-DEscription Repository), the largest publicly available patch-level dataset covering multiple organ types, including Skin, Colorectal, Thorax, and Breast with comprehensive class coverage for each organ. SPIDER provides high-quality annotations verified by expert pathologists and includes surrounding context patches, which enhance classification performance by providing spatial context. Alongside the dataset, we present baseline models trained on SPIDER using the Hibou-L foundation model as a feature extractor combined with an attention-based classification head. The models achieve state-of-the-art performance across multiple tissue categories and serve as strong benchmarks for future digital pathology research. Beyond patch classification, the model enables rapid identification of significant areas, quantitative tissue metrics, and establishes a foundation for multimodal approaches. Both the dataset and trained models are publicly available to advance research, reproducibility, and AI-driven pathology development. Access them at: https://github.com/HistAI/SPIDER
Related papers
- A Survey of Pathology Foundation Model: Progress and Future Directions [3.009351592961681]
Recent Pathology Foundation Models (PFMs), pretrained on large-scale histopathology data, have significantly enhanced capabilities of extractors and aggregators.
This survey presents a hierarchical taxonomy organizing PFMs through a top-down philosophy that can be utilized to analyze FMs in any domain.
arXiv Detail & Related papers (2025-04-05T03:44:09Z) - PathInsight: Instruction Tuning of Multimodal Datasets and Models for Intelligence Assisted Diagnosis in Histopathology [7.87900104748629]
We have meticulously compiled a dataset of approximately 45,000 cases, covering over 6 different tasks.
We have fine-tuned multimodal large models, specifically LLaVA, Qwen-VL, InternLM, with this dataset to enhance instruction-based performance.
arXiv Detail & Related papers (2024-08-13T17:05:06Z) - Synthetic Data for Robust Stroke Segmentation [0.0]
Current deep learning-based approaches to lesion segmentation in neuroimaging often depend on high-resolution images and extensive annotated data.
This paper introduces a novel synthetic data framework tailored for stroke lesion segmentation.
Our approach trains models with label maps from healthy and stroke datasets, facilitating segmentation across both normal and pathological tissue.
arXiv Detail & Related papers (2024-04-02T13:42:29Z) - UniCell: Universal Cell Nucleus Classification via Prompt Learning [76.11864242047074]
We propose a universal cell nucleus classification framework (UniCell)
It employs a novel prompt learning mechanism to uniformly predict the corresponding categories of pathological images from different dataset domains.
In particular, our framework adopts an end-to-end architecture for nuclei detection and classification, and utilizes flexible prediction heads for adapting various datasets.
arXiv Detail & Related papers (2024-02-20T11:50:27Z) - Additional Look into GAN-based Augmentation for Deep Learning COVID-19
Image Classification [57.1795052451257]
We study the dependence of the GAN-based augmentation performance on dataset size with a focus on small samples.
We train StyleGAN2-ADA with both sets and then, after validating the quality of generated images, we use trained GANs as one of the augmentations approaches in multi-class classification problems.
The GAN-based augmentation approach is found to be comparable with classical augmentation in the case of medium and large datasets but underperforms in the case of smaller datasets.
arXiv Detail & Related papers (2024-01-26T08:28:13Z) - Large-scale Long-tailed Disease Diagnosis on Radiology Images [51.453990034460304]
RadDiag is a foundational model supporting 2D and 3D inputs across various modalities and anatomies.
Our dataset, RP3D-DiagDS, contains 40,936 cases with 195,010 scans covering 5,568 disorders.
arXiv Detail & Related papers (2023-12-26T18:20:48Z) - Data and Knowledge Co-driving for Cancer Subtype Classification on
Multi-Scale Histopathological Slides [4.22412600279685]
We propose a Data and Knowledge Co-driving (D&K) model to replicate the process of cancer subtype classification on a histological slide like a pathologist.
Specifically, in the data-driven module, the bagging mechanism in ensemble learning is leveraged to integrate the histological features from various bags extracted by the embedding representation unit.
arXiv Detail & Related papers (2023-04-18T21:57:37Z) - Domain Adaptive Nuclei Instance Segmentation and Classification via
Category-aware Feature Alignment and Pseudo-labelling [65.40672505658213]
We propose a novel deep neural network, namely Category-Aware feature alignment and Pseudo-Labelling Network (CAPL-Net) for UDA nuclei instance segmentation and classification.
Our approach outperforms state-of-the-art UDA methods with a remarkable margin.
arXiv Detail & Related papers (2022-07-04T07:05:06Z) - PDBL: Improving Histopathological Tissue Classification with
Plug-and-Play Pyramidal Deep-Broad Learning [20.940530194934972]
Pyramidal Deep-Broad Learning (PDBL) is a lightweight plug-and-play module for any well-trained classification backbone.
PDBL can steadily improve the tissue-level classification performance for any CNN backbones.
arXiv Detail & Related papers (2021-11-04T09:35:12Z) - A Meta-embedding-based Ensemble Approach for ICD Coding Prediction [64.42386426730695]
International Classification of Diseases (ICD) are the de facto codes used globally for clinical coding.
These codes enable healthcare providers to claim reimbursement and facilitate efficient storage and retrieval of diagnostic information.
Our proposed approach enhances the performance of neural models by effectively training word vectors using routine medical data as well as external knowledge from scientific articles.
arXiv Detail & Related papers (2021-02-26T17:49:58Z) - G-MIND: An End-to-End Multimodal Imaging-Genetics Framework for
Biomarker Identification and Disease Classification [49.53651166356737]
We propose a novel deep neural network architecture to integrate imaging and genetics data, as guided by diagnosis, that provides interpretable biomarkers.
We have evaluated our model on a population study of schizophrenia that includes two functional MRI (fMRI) paradigms and Single Nucleotide Polymorphism (SNP) data.
arXiv Detail & Related papers (2021-01-27T19:28:04Z) - Deep Mining External Imperfect Data for Chest X-ray Disease Screening [57.40329813850719]
We argue that incorporating an external CXR dataset leads to imperfect training data, which raises the challenges.
We formulate the multi-label disease classification problem as weighted independent binary tasks according to the categories.
Our framework simultaneously models and tackles the domain and label discrepancies, enabling superior knowledge mining ability.
arXiv Detail & Related papers (2020-06-06T06:48:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.