論文の概要: Predicting Cascade Failures in Interdependent Urban Infrastructure Networks
- arxiv url: http://arxiv.org/abs/2503.02890v1
- Date: Wed, 26 Feb 2025 14:50:22 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-09 03:20:18.992622
- Title: Predicting Cascade Failures in Interdependent Urban Infrastructure Networks
- Title(参考訳): 都市間インフラネットワークにおけるカスケード故障の予測
- Authors: Yinzhou Tang, Jinghua Piao, Huandong Wang, Shaw Rajib, Yong Li,
- Abstract要約: カスケード障害(CF)は、インフラストラクチャネットワークに広がるコンポーネントの破壊を伴い、システム全体の崩壊を引き起こします。
textbfIntegrated textbfInterdependent textbfInfrastructure CF model(I3$)を導入する。
I3$はAUCで31.94%、精度で18.03%、リコールで29.17%、インフラ予測で22.73%を達成
- 参考スコア(独自算出の注目度): 10.59074382276026
- License:
- Abstract: Cascading failures (CF) entail component breakdowns spreading through infrastructure networks, causing system-wide collapse. Predicting CFs is of great importance for infrastructure stability and urban function. Despite extensive research on CFs in single networks such as electricity and road networks, interdependencies among diverse infrastructures remain overlooked, and capturing intra-infrastructure CF dynamics amid complex evolutions poses challenges. To address these gaps, we introduce the \textbf{I}ntegrated \textbf{I}nterdependent \textbf{I}nfrastructure CF model ($I^3$), designed to capture CF dynamics both within and across infrastructures. $I^3$ employs a dual GAE with global pooling for intra-infrastructure dynamics and a heterogeneous graph for inter-infrastructure interactions. An initial node enhancement pre-training strategy mitigates GCN-induced over-smoothing. Experiments demonstrate $I^3$ achieves a 31.94\% in terms of AUC, 18.03\% in terms of Precision, 29.17\% in terms of Recall, 22.73\% in terms of F1-score boost in predicting infrastructure failures, and a 28.52\% reduction in terms of RMSE for cascade volume forecasts compared to leading models. It accurately pinpoints phase transitions in interconnected and singular networks, rectifying biases in models tailored for singular networks. Access the code at https://github.com/tsinghua-fib-lab/Icube.
- Abstract(参考訳): カスケード障害(CF)は、インフラストラクチャネットワークに広がるコンポーネントの破壊を伴い、システム全体の崩壊を引き起こします。
CFの予測はインフラの安定性と都市機能にとって非常に重要である。
電気や道路ネットワークのような単一ネットワークにおけるCFの広範な研究にもかかわらず、様々なインフラ間の相互依存は見過ごされ、複雑な進化の過程でインフラ内CFのダイナミクスを捉えることが課題となっている。
これらのギャップに対処するために、インフラ内およびインフラストラクチャ間のCFダイナミクスをキャプチャするために設計された、 \textbf{I}tegrated \textbf{I}nterdependent \textbf{I}nfrastructure CF model(I^3$)を導入する。
I^3$は、内部構造力学のグローバルプールと、内部構造間相互作用のヘテロジニアスグラフを備えた二重GAEを用いる。
初期ノード強化事前学習戦略は、GCNによるオーバースムーシングを緩和する。
I^3$はAUCで31.94.%、精度で18.03.%、リコールで29.17.%、インフラ故障予測でF1スコアが22.73.%、主要なモデルに比べてRMSEで28.52.%減少している。
相互接続されたネットワークと特異なネットワークの位相遷移を正確にピンポイントし、特異なネットワークに適したモデルのバイアスを補正する。
https://github.com/tsinghua-fib-lab/Icube.comでコードにアクセスする。
関連論文リスト
- Imbalance-Aware Culvert-Sewer Defect Segmentation Using an Enhanced Feature Pyramid Network [1.7466076090043157]
本稿では,不均衡なデータセット内での変質管と下水道管のセマンティックセグメンテーションの深層学習モデルを提案する。
このモデルは、データセットの不均衡に対応するために、クラス分解やデータ拡張のような戦略を採用している。
E-FPNが最先端の手法より優れていることを示す。
論文 参考訳(メタデータ) (2024-08-19T17:40:18Z) - Isomorphic Pruning for Vision Models [56.286064975443026]
構造化プルーニングは、冗長なサブ構造を取り除くことによって、ディープニューラルネットワークの計算オーバーヘッドを低減する。
Isomorphic Pruningは、ネットワークアーキテクチャの範囲で有効性を示すシンプルなアプローチである。
論文 参考訳(メタデータ) (2024-07-05T16:14:53Z) - Chasing Fairness in Graphs: A GNN Architecture Perspective [73.43111851492593]
グラフニューラルネットワーク(GNN)の統一最適化フレームワーク内で設計されたtextsfFair textsfMessage textsfPassing(FMP)を提案する。
FMPでは、アグリゲーションがまず隣人の情報を活用するために採用され、バイアス軽減ステップにより、人口集団ノードのプレゼンテーションセンタが明示的に統合される。
ノード分類タスクの実験により、提案されたFMPは、実世界の3つのデータセットの公平性と正確性の観点から、いくつかのベースラインを上回っていることが示された。
論文 参考訳(メタデータ) (2023-12-19T18:00:15Z) - IIVA: A Simulation Based Generalized Framework for Interdependent
Infrastructure Vulnerability Assessment [0.0]
本稿では,新たなインフラストラクチャ脆弱性評価フレームワークを提案する。
コンポーネントの初期失敗率が高いほど、インフラストラクチャの脆弱性が大きくなることが観察された。
論文 参考訳(メタデータ) (2022-12-13T20:37:03Z) - A Bayesian Approach to Reconstructing Interdependent Infrastructure
Networks from Cascading Failures [2.9364290037516496]
ネットワーク相互依存を理解することは、カスケード障害を予測し、破壊を計画するために不可欠である。
個々のネットワークのトポロジに関するデータは、プライバシやセキュリティ上の懸念から、一般には利用できないことが多い。
本稿では,相互依存型インフラストラクチャネットワークのトポロジを再構築するスケーラブルな非パラメトリックベイズ手法を提案する。
論文 参考訳(メタデータ) (2022-11-28T17:45:41Z) - EGRC-Net: Embedding-induced Graph Refinement Clustering Network [66.44293190793294]
埋め込みによるグラフリファインメントクラスタリングネットワーク (EGRC-Net) という新しいグラフクラスタリングネットワークを提案する。
EGRC-Netは学習した埋め込みを利用して初期グラフを適応的に洗練し、クラスタリング性能を向上させる。
提案手法はいくつかの最先端手法より一貫して優れている。
論文 参考訳(メタデータ) (2022-11-19T09:08:43Z) - BScNets: Block Simplicial Complex Neural Networks [79.81654213581977]
グラフ学習における最新の方向性として、SNN(Simplicial Neural Network)が最近登場した。
リンク予測のためのBlock Simplicial Complex Neural Networks (BScNets) モデルを提案する。
BScNetsは、コストを抑えながら最先端のモデルよりも大きなマージンを保っている。
論文 参考訳(メタデータ) (2021-12-13T17:35:54Z) - IC Networks: Remodeling the Basic Unit for Convolutional Neural Networks [8.218732270970381]
既存のCNNにIC構造を組み込んで性能を向上することができる。
ICネットワークのトレーニングを高速化するために,新しいトレーニング手法,すなわち弱いロジット蒸留(WLD)を提案する。
ImageNetの実験では、IC構造をResNet-50に統合し、トップ1エラーを22.38%から21.75%に削減した。
論文 参考訳(メタデータ) (2021-02-06T03:15:43Z) - ACDC: Weight Sharing in Atom-Coefficient Decomposed Convolution [57.635467829558664]
我々は,CNNにおいて,畳み込みカーネル間の構造正則化を導入する。
我々はCNNがパラメータや計算量を劇的に減らして性能を維持していることを示す。
論文 参考訳(メタデータ) (2020-09-04T20:41:47Z) - Structured Convolutions for Efficient Neural Network Design [65.36569572213027]
畳み込みニューラルネットワーク構築ブロックのテクスト単純構造における冗長性を利用してモデル効率に取り組む。
この分解が2Dカーネルや3Dカーネルだけでなく、完全に接続されたレイヤにも適用可能であることを示す。
論文 参考訳(メタデータ) (2020-08-06T04:38:38Z) - Rethinking Depthwise Separable Convolutions: How Intra-Kernel
Correlations Lead to Improved MobileNets [6.09170287691728]
CNNのための高効率なビルディングブロックとして,ブループリント分離型畳み込み(BSConv)を導入する。
それらは、訓練されたモデルからカーネル特性の定量的解析によって動機付けられている。
我々のアプローチは、深く分離可能な畳み込みの適用のために、完全な理論的導出、解釈、正当化を提供する。
論文 参考訳(メタデータ) (2020-03-30T15:23:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。