Robust time series generation via Schrödinger Bridge: a comprehensive evaluation
- URL: http://arxiv.org/abs/2503.02943v2
- Date: Sat, 08 Mar 2025 15:12:00 GMT
- Title: Robust time series generation via Schrödinger Bridge: a comprehensive evaluation
- Authors: Alexandre Alouadi, Baptiste Barreau, Laurent Carlier, Huyên Pham,
- Abstract summary: We investigate the generative capabilities of the Schr"odinger Bridge (SB) approach for time series.<n>We benchmark it against state-of-the-art (SOTA) time series generation methods across diverse datasets.<n>Our results offer valuable insights into the SB framework's potential as a versatile and robust tool for time series generation.
- Score: 41.94295877935867
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We investigate the generative capabilities of the Schr\"odinger Bridge (SB) approach for time series. The SB framework formulates time series synthesis as an entropic optimal interpolation transport problem between a reference probability measure on path space and a target joint distribution. This results in a stochastic differential equation over a finite horizon that accurately captures the temporal dynamics of the target time series. While the SB approach has been largely explored in fields like image generation, there is a scarcity of studies for its application to time series. In this work, we bridge this gap by conducting a comprehensive evaluation of the SB method's robustness and generative performance. We benchmark it against state-of-the-art (SOTA) time series generation methods across diverse datasets, assessing its strengths, limitations, and capacity to model complex temporal dependencies. Our results offer valuable insights into the SB framework's potential as a versatile and robust tool for time series generation.
Related papers
- MFRS: A Multi-Frequency Reference Series Approach to Scalable and Accurate Time-Series Forecasting [51.94256702463408]
Time series predictability is derived from periodic characteristics at different frequencies.
We propose a novel time series forecasting method based on multi-frequency reference series correlation analysis.
Experiments on major open and synthetic datasets show state-of-the-art performance.
arXiv Detail & Related papers (2025-03-11T11:40:14Z) - Deep End-to-End Survival Analysis with Temporal Consistency [49.77103348208835]
We present a novel Survival Analysis algorithm designed to efficiently handle large-scale longitudinal data.
A central idea in our method is temporal consistency, a hypothesis that past and future outcomes in the data evolve smoothly over time.
Our framework uniquely incorporates temporal consistency into large datasets by providing a stable training signal.
arXiv Detail & Related papers (2024-10-09T11:37:09Z) - Bootstrap aggregation and confidence measures to improve time series
causal discovery [0.0]
We introduce a novel bootstrap approach designed for time series causal discovery that preserves the temporal dependencies and lag structure.
We combine this approach with the state-of-the-art conditional-independence-based algorithm PCMCI+.
arXiv Detail & Related papers (2023-06-15T08:37:16Z) - Provably Convergent Schr\"odinger Bridge with Applications to
Probabilistic Time Series Imputation [21.27702285561771]
We present a first convergence analysis of the Schr"odinger bridge algorithm based on approximated projections.
As for its practical applications, we apply SBP to probabilistic time series imputation by generating missing values conditioned on observed data.
arXiv Detail & Related papers (2023-05-12T04:39:01Z) - Robust Detection of Lead-Lag Relationships in Lagged Multi-Factor Models [61.10851158749843]
Key insights can be obtained by discovering lead-lag relationships inherent in the data.
We develop a clustering-driven methodology for robust detection of lead-lag relationships in lagged multi-factor models.
arXiv Detail & Related papers (2023-05-11T10:30:35Z) - The Capacity and Robustness Trade-off: Revisiting the Channel
Independent Strategy for Multivariate Time Series Forecasting [50.48888534815361]
We show that models trained with the Channel Independent (CI) strategy outperform those trained with the Channel Dependent (CD) strategy.
Our results conclude that the CD approach has higher capacity but often lacks robustness to accurately predict distributionally drifted time series.
We propose a modified CD method called Predict Residuals with Regularization (PRReg) that can surpass the CI strategy.
arXiv Detail & Related papers (2023-04-11T13:15:33Z) - Generative modeling for time series via Schr{\"o}dinger bridge [0.0]
We propose a novel generative model for time series based on Schr"dinger bridge (SB) approach.
This consists in the entropic via optimal transport between a reference probability measure on path space and a target measure consistent with the joint data distribution of the time series.
arXiv Detail & Related papers (2023-04-11T09:45:06Z) - Generative Time Series Forecasting with Diffusion, Denoise, and
Disentanglement [51.55157852647306]
Time series forecasting has been a widely explored task of great importance in many applications.
It is common that real-world time series data are recorded in a short time period, which results in a big gap between the deep model and the limited and noisy time series.
We propose to address the time series forecasting problem with generative modeling and propose a bidirectional variational auto-encoder equipped with diffusion, denoise, and disentanglement.
arXiv Detail & Related papers (2023-01-08T12:20:46Z) - Towards Spatio-Temporal Aware Traffic Time Series Forecasting--Full
Version [37.09531298150374]
Traffic series forecasting is challenging due to complex time series patterns for the same time series patterns may vary across time, where, for example, there exist periods across a day showing stronger temporal correlations.
Such-temporal models employ a shared parameter space irrespective of the time locations and the time periods and they assume that the temporal correlations are similar across locations and do not always hold across time which may not always be the case.
We propose a framework that aims at turning ICD-temporal aware models to encode sub-temporal models.
arXiv Detail & Related papers (2022-03-29T16:44:56Z) - Cluster-and-Conquer: A Framework For Time-Series Forecasting [94.63501563413725]
We propose a three-stage framework for forecasting high-dimensional time-series data.
Our framework is highly general, allowing for any time-series forecasting and clustering method to be used in each step.
When instantiated with simple linear autoregressive models, we are able to achieve state-of-the-art results on several benchmark datasets.
arXiv Detail & Related papers (2021-10-26T20:41:19Z) - Multivariate Time-series Anomaly Detection via Graph Attention Network [27.12694738711663]
Anomaly detection on multivariate time-series is of great importance in both data mining research and industrial applications.
One major limitation is that they do not capture the relationships between different time-series explicitly.
We propose a novel self-supervised framework for multivariate time-series anomaly detection to address this issue.
arXiv Detail & Related papers (2020-09-04T07:46:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.