Generative modeling for time series via Schr{\"o}dinger bridge
- URL: http://arxiv.org/abs/2304.05093v1
- Date: Tue, 11 Apr 2023 09:45:06 GMT
- Title: Generative modeling for time series via Schr{\"o}dinger bridge
- Authors: Mohamed Hamdouche (LPSM), Pierre Henry-Labordere, Huy\^en Pham (LPSM)
- Abstract summary: We propose a novel generative model for time series based on Schr"dinger bridge (SB) approach.
This consists in the entropic via optimal transport between a reference probability measure on path space and a target measure consistent with the joint data distribution of the time series.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We propose a novel generative model for time series based on Schr{\"o}dinger
bridge (SB) approach. This consists in the entropic interpolation via optimal
transport between a reference probability measure on path space and a target
measure consistent with the joint data distribution of the time series. The
solution is characterized by a stochastic differential equation on finite
horizon with a path-dependent drift function, hence respecting the temporal
dynamics of the time series distribution. We can estimate the drift function
from data samples either by kernel regression methods or with LSTM neural
networks, and the simulation of the SB diffusion yields new synthetic data
samples of the time series. The performance of our generative model is
evaluated through a series of numerical experiments. First, we test with a toy
autoregressive model, a GARCH Model, and the example of fractional Brownian
motion, and measure the accuracy of our algorithm with marginal and temporal
dependencies metrics. Next, we use our SB generated synthetic samples for the
application to deep hedging on real-data sets. Finally, we illustrate the SB
approach for generating sequence of images.
Related papers
- Score-based Generative Models with Adaptive Momentum [40.84399531998246]
We propose an adaptive momentum sampling method to accelerate the transforming process.
We show that our method can produce more faithful images/graphs in small sampling steps with 2 to 5 times speed up.
arXiv Detail & Related papers (2024-05-22T15:20:27Z) - On the Trajectory Regularity of ODE-based Diffusion Sampling [79.17334230868693]
Diffusion-based generative models use differential equations to establish a smooth connection between a complex data distribution and a tractable prior distribution.
In this paper, we identify several intriguing trajectory properties in the ODE-based sampling process of diffusion models.
arXiv Detail & Related papers (2024-05-18T15:59:41Z) - Stable generative modeling using Schrödinger bridges [0.22499166814992438]
We propose a generative model combining Schr"odinger bridges and Langevin dynamics.
Our framework can be naturally extended to generate conditional samples and to Bayesian inference problems.
arXiv Detail & Related papers (2024-01-09T06:15:45Z) - Generative Modeling with Phase Stochastic Bridges [49.4474628881673]
Diffusion models (DMs) represent state-of-the-art generative models for continuous inputs.
We introduce a novel generative modeling framework grounded in textbfphase space dynamics
Our framework demonstrates the capability to generate realistic data points at an early stage of dynamics propagation.
arXiv Detail & Related papers (2023-10-11T18:38:28Z) - A Geometric Perspective on Diffusion Models [57.27857591493788]
We inspect the ODE-based sampling of a popular variance-exploding SDE.
We establish a theoretical relationship between the optimal ODE-based sampling and the classic mean-shift (mode-seeking) algorithm.
arXiv Detail & Related papers (2023-05-31T15:33:16Z) - Score-based Continuous-time Discrete Diffusion Models [102.65769839899315]
We extend diffusion models to discrete variables by introducing a Markov jump process where the reverse process denoises via a continuous-time Markov chain.
We show that an unbiased estimator can be obtained via simple matching the conditional marginal distributions.
We demonstrate the effectiveness of the proposed method on a set of synthetic and real-world music and image benchmarks.
arXiv Detail & Related papers (2022-11-30T05:33:29Z) - Fast Sampling of Diffusion Models via Operator Learning [74.37531458470086]
We use neural operators, an efficient method to solve the probability flow differential equations, to accelerate the sampling process of diffusion models.
Compared to other fast sampling methods that have a sequential nature, we are the first to propose a parallel decoding method.
We show our method achieves state-of-the-art FID of 3.78 for CIFAR-10 and 7.83 for ImageNet-64 in the one-model-evaluation setting.
arXiv Detail & Related papers (2022-11-24T07:30:27Z) - Wasserstein multivariate auto-regressive models for modeling distributional time series [0.0]
We propose a new auto-regressive model for the statistical analysis of multivariate distributional time series.
Results on the existence, uniqueness and stationarity of the solution of such a model are provided.
To shed some light on the benefits of our approach for real data analysis, we also apply this methodology to a data set made of observations from age distribution in different countries.
arXiv Detail & Related papers (2022-07-12T10:18:36Z) - On the Dynamics of Inference and Learning [0.0]
We present a treatment of this Bayesian updating process as a continuous dynamical system.
We show that when the Cram'er-Rao bound is saturated the learning rate is governed by a simple $1/T$ power-law.
arXiv Detail & Related papers (2022-04-19T18:04:36Z) - Anomaly Detection of Time Series with Smoothness-Inducing Sequential
Variational Auto-Encoder [59.69303945834122]
We present a Smoothness-Inducing Sequential Variational Auto-Encoder (SISVAE) model for robust estimation and anomaly detection of time series.
Our model parameterizes mean and variance for each time-stamp with flexible neural networks.
We show the effectiveness of our model on both synthetic datasets and public real-world benchmarks.
arXiv Detail & Related papers (2021-02-02T06:15:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.