論文の概要: LAPD: Langevin-Assisted Bayesian Active Learning for Physical Discovery
- arxiv url: http://arxiv.org/abs/2503.02983v1
- Date: Tue, 04 Mar 2025 20:17:24 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-06 15:53:33.896401
- Title: LAPD: Langevin-Assisted Bayesian Active Learning for Physical Discovery
- Title(参考訳): LAPD:Langevin-Assisted Bayesian Active Learning for Physical Discovery
- Authors: Cindy Xiangrui Kong, Haoyang Zheng, Guang Lin,
- Abstract要約: Langevin-Assisted Active Physical Discovery (LAPD) は、モンテカルロのレプリカ交換勾配を統合したフレームワークである。
LAPDはノイズデータを用いた信頼性,不確実性を考慮した識別を実現する。
Lotka-Volterra, Lorenz, Burgers, Convection-Diffusion equationsなどの非線形系のLAPDを評価する。
- 参考スコア(独自算出の注目度): 5.373182035720355
- License:
- Abstract: Discovering physical laws from data is a fundamental challenge in scientific research, particularly when high-quality data are scarce or costly to obtain. Traditional methods for identifying dynamical systems often struggle with noise sensitivity, inefficiency in data usage, and the inability to quantify uncertainty effectively. To address these challenges, we propose Langevin-Assisted Active Physical Discovery (LAPD), a Bayesian framework that integrates replica-exchange stochastic gradient Langevin Monte Carlo to simultaneously enable efficient system identification and robust uncertainty quantification (UQ). By balancing gradient-driven exploration in coefficient space and generating an ensemble of candidate models during exploitation, LAPD achieves reliable, uncertainty-aware identification with noisy data. In the face of data scarcity, the probabilistic foundation of LAPD further promotes the integration of active learning (AL) via a hybrid uncertainty-space-filling acquisition function. This strategy sequentially selects informative data to reduce data collection costs while maintaining accuracy. We evaluate LAPD on diverse nonlinear systems such as the Lotka-Volterra, Lorenz, Burgers, and Convection-Diffusion equations, demonstrating its robustness with noisy and limited data as well as superior uncertainty calibration compared to existing methods. The AL extension reduces the required measurements by around 60% for the Lotka-Volterra system and by around 40% for Burgers' equation compared to random data sampling, highlighting its potential for resource-constrained experiments. Our framework establishes a scalable, uncertainty-aware methodology for data-efficient discovery of dynamical systems, with broad applicability to problems where high-fidelity data acquisition is prohibitively expensive.
- Abstract(参考訳): データから物理法則を発見することは、特に高品質のデータが少ない、あるいは入手にコストがかかる場合、科学研究における根本的な課題である。
従来の力学系同定法は、ノイズ感度、データ利用の非効率性、不確実性を効果的に定量化できないことに苦慮することが多い。
これらの課題に対処するため,Langevin-Assisted Active Physical Discovery (LAPD) を提案する。
係数空間における勾配駆動探索と、搾取中の候補モデルのアンサンブルのバランスをとることにより、LAPDはノイズデータによる信頼性の高い不確実性同定を実現する。
データ不足に直面して、LAPDの確率論的基盤は、ハイブリッド不確実空間充足獲得関数を介してアクティブラーニング(AL)の統合をさらに促進する。
この戦略は、正確性を保ちながら、情報収集コストを低減するために、逐次情報選択を行う。
我々は,ロトカ・ボルテラ,ローレンツ,バーガーズ,対流拡散方程式などの様々な非線形系のLAPDを評価し,その頑健さをノイズや制限データで示し,既存手法に比べて優れた不確実性校正を行った。
AL拡張は、ロトカ・ボルテラ系で必要な測定値を約60%減らし、ランダムなデータサンプリングと比較してバーガースの方程式を約40%減らし、資源に制約のある実験の可能性を強調した。
本フレームワークは,高忠実度データ取得が違法に高価である問題に対して広く適用可能な,データ効率の高い動的システムの発見のための,スケーラブルで不確実性を考慮した方法論を確立する。
関連論文リスト
- Federated Learning for Efficient Condition Monitoring and Anomaly Detection in Industrial Cyber-Physical Systems [0.30723404270319693]
本稿では,センサの信頼性に基づく適応モデルアグリゲーション,資源最適化のための動的ノード選択,耐故障性のためのワイブルチェックポインティングという,3つの重要な革新を伴う拡張FLフレームワークを提案する。
NASAベアリングと水圧システムのデータセットの実験は、最先端のFL法と比較して優れた性能を示し、異常検出とノード故障時の精度の維持において99.5%のAUC-ROCを達成した。
論文 参考訳(メタデータ) (2025-01-28T03:04:47Z) - Towards Resource-Efficient Federated Learning in Industrial IoT for Multivariate Time Series Analysis [50.18156030818883]
異常と欠落したデータは、産業応用における厄介な問題を構成する。
ディープラーニングによる異常検出が重要な方向として現れている。
エッジデバイスで収集されたデータは、ユーザのプライバシを含む。
論文 参考訳(メタデータ) (2024-11-06T15:38:31Z) - Stochastic Gradient Descent with Adaptive Data [4.119418481809095]
勾配降下(SGD)は、オンライン学習シナリオにおいて特に有用である強力な最適化手法である。
オペレーションリサーチにおけるポリシー最適化問題へのSGDの適用には、環境を変えてポリシー更新に使用するデータに影響を与えるという、明確な課題が伴う。
過去の決定が生成したデータに与える影響は、勾配推定におけるバイアスを導入し、iidケースに存在しないオンライン学習の不安定性の潜在的な原因を示す。
適応データによるSGDの収束速度は, 政策誘起力学の混合時間に係わる限り, 古典的イド設定とほとんど同様であることを示す。
論文 参考訳(メタデータ) (2024-10-02T02:58:32Z) - DeepHYDRA: Resource-Efficient Time-Series Anomaly Detection in Dynamically-Configured Systems [3.44012349879073]
我々はDeepHYDRA(Deep Hybrid DBSCAN/reduction-based Anomaly Detection)を提案する。
DBSCANと学習ベースの異常検出を組み合わせる。
大規模なデータセットと複雑なデータセットの両方において、異なるタイプの異常を確実に検出できることが示されている。
論文 参考訳(メタデータ) (2024-05-13T13:47:15Z) - Privacy-preserving Federated Primal-dual Learning for Non-convex and Non-smooth Problems with Model Sparsification [51.04894019092156]
FL(Federated Learning)は,FLオーケストレーション(PS)の下でクライアント上でモデルをトレーニングする,急速に成長する領域として認識されている。
本稿では,非滑らかなFL問題に対して,新しい一次分離アルゴリズムを提案し,保証する。
その独特な洞察力のある性質とその分析も提示される。
論文 参考訳(メタデータ) (2023-10-30T14:15:47Z) - Solving High-Dimensional Inverse Problems with Auxiliary Uncertainty via
Operator Learning with Limited Data [0.35880734696551125]
システム状態の観測からの情報源の同定は、帰属と予測に不可欠である。
データ課題は、状態とソースの高次元性、サロゲートモデルをトレーニングするためのコストのかかるモデルシミュレーションの限定的なアンサンブル、インバージョンのためのほとんど、潜在的にノイズの多い状態観察から生じる。
本研究では,(1)シミュレーションのアンサンブルによって提供されるフローマップに,ディープニューラルネットワークのサロゲートを校正するフレームワークを導入し,(2)ベイジアンフレームワークにおけるこれらのサロゲートを用いて,最適化による観測からのソースの特定を行う。
論文 参考訳(メタデータ) (2023-03-20T18:29:23Z) - Probabilistic robust linear quadratic regulators with Gaussian processes [73.0364959221845]
ガウス過程(GP)のような確率モデルは、制御設計に続く使用のためのデータから未知の動的システムを学ぶための強力なツールです。
本稿では、確率的安定性マージンに関して堅牢なコントローラを生成する線形化GPダイナミクスのための新しいコントローラ合成について述べる。
論文 参考訳(メタデータ) (2021-05-17T08:36:18Z) - The Impact of Data on the Stability of Learning-Based Control- Extended
Version [63.97366815968177]
本稿では,Lyapunovをベースとした,認証制御性能に対するデータの影響の定量化手法を提案する。
ガウス過程を通じて未知系の力学をモデル化することにより、モデルの不確実性と安定性条件の満足度の間の相互関係を決定できる。
論文 参考訳(メタデータ) (2020-11-20T19:10:01Z) - Deep Learning based Uncertainty Decomposition for Real-time Control [9.067368638784355]
本稿では,ディープラーニングを用いたトレーニングデータの欠如を検出する新しい手法を提案する。
合成および実世界のデータセットに対する既存のアプローチに対する利点を示す。
さらに、シミュレーションされたクアッドコプターにオンラインデータ効率制御を展開させる上で、この不確実性推定の実用性を実証する。
論文 参考訳(メタデータ) (2020-10-06T10:46:27Z) - Learning while Respecting Privacy and Robustness to Distributional
Uncertainties and Adversarial Data [66.78671826743884]
分散ロバストな最適化フレームワークはパラメトリックモデルのトレーニングのために検討されている。
目的は、逆操作された入力データに対して頑健なトレーニングモデルを提供することである。
提案されたアルゴリズムは、オーバーヘッドがほとんどない堅牢性を提供する。
論文 参考訳(メタデータ) (2020-07-07T18:25:25Z) - SUOD: Accelerating Large-Scale Unsupervised Heterogeneous Outlier
Detection [63.253850875265115]
外乱検出(OD)は、一般的なサンプルから異常物体を識別するための機械学習(ML)タスクである。
そこで我々は,SUODと呼ばれるモジュール型加速度システムを提案する。
論文 参考訳(メタデータ) (2020-03-11T00:22:50Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。