論文の概要: AHCPTQ: Accurate and Hardware-Compatible Post-Training Quantization for Segment Anything Model
- arxiv url: http://arxiv.org/abs/2503.03088v1
- Date: Wed, 05 Mar 2025 01:04:45 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-06 15:52:55.636154
- Title: AHCPTQ: Accurate and Hardware-Compatible Post-Training Quantization for Segment Anything Model
- Title(参考訳): AHCPTQ:Segment Anything Modelのための正確でハードウェアに適合したポストトレーニング量子化
- Authors: Wenlun Zhang, Shimpei Ando, Kentaro Yoshioka,
- Abstract要約: Segment Anything Model (SAM) は様々な視覚的タスクに対して強力な汎用性を示している。
ポストトレーニング量子化(PTQ)は、効率的なデプロイメントのための効果的な戦略として登場した。
本稿では,SAM の高精度かつハードウェア効率の高い PTQ 手法である AHCPTQ を提案する。
- 参考スコア(独自算出の注目度): 0.6827423171182154
- License:
- Abstract: The Segment Anything Model (SAM) has demonstrated strong versatility across various visual tasks. However, its large storage requirements and high computational cost pose challenges for practical deployment. Post-training quantization (PTQ) has emerged as an effective strategy for efficient deployment, but we identify two key challenges in SAM that hinder the effectiveness of existing PTQ methods: the heavy-tailed and skewed distribution of post-GELU activations, and significant inter-channel variation in linear projection activations. To address these challenges, we propose AHCPTQ, an accurate and hardware-efficient PTQ method for SAM. AHCPTQ introduces hardware-compatible Hybrid Log-Uniform Quantization (HLUQ) to manage post-GELU activations, employing log2 quantization for dense small values and uniform quantization for sparse large values to enhance quantization resolution. Additionally, AHCPTQ incorporates Channel-Aware Grouping (CAG) to mitigate inter-channel variation by progressively clustering activation channels with similar distributions, enabling them to share quantization parameters and improving hardware efficiency. The combination of HLUQ and CAG not only enhances quantization effectiveness but also ensures compatibility with efficient hardware execution. For instance, under the W4A4 configuration on the SAM-L model, AHCPTQ achieves 36.6% mAP on instance segmentation with the DINO detector, while achieving a 7.89x speedup and 8.64x energy efficiency over its floating-point counterpart in FPGA implementation.
- Abstract(参考訳): Segment Anything Model (SAM) は様々な視覚的タスクに対して強力な汎用性を示している。
しかし、その大きなストレージ要件と高い計算コストは、実際の展開に困難をもたらす。
学習後量子化(PTQ)は効率的な展開のための効果的な戦略として現れてきたが、既存のPTQ手法の有効性を妨げるSAMの2つの重要な課題は、GELU後のアクティベーションの重みと歪んだ分布、線形プロジェクションアクティベーションにおけるチャネル間の大きなばらつきである。
これらの課題に対処するために,SAM の正確かつハードウェア効率の良い PTQ 手法である AHCPTQ を提案する。
AHCPTQは、ハードウェア互換のHybrid Log-Uniform Quantization (HLUQ)を導入し、GELU後のアクティベーションを管理する。
さらに、AHCPTQはチャネル・アウェア・グループ(CAG)を導入して、アクティベーションチャネルと同じような分布を徐々にクラスタ化することで、チャネル間の変動を緩和し、量子化パラメータの共有とハードウェア効率の向上を可能にしている。
HLUQとCAGの組み合わせは量子化の有効性を高めるだけでなく、効率的なハードウェア実行との互換性を確保する。
例えば、SAM-LモデルのW4A4構成では、AHCPTQはDINO検出器とのインスタンスセグメンテーションで36.6%のmAPを達成し、FPGAの実装では浮動小数点よりも7.89倍のスピードアップと8.64倍のエネルギー効率を実現している。
関連論文リスト
- Channel-Wise Mixed-Precision Quantization for Large Language Models [47.00361921910259]
大規模言語モデル(LLM)は、幅広い言語タスクで顕著な成功を収めている。
重みのみの量子化は、LCMのメモリフットプリントを削減するための有望な解決策である。
本稿では,CMPQ(Channel-Wise Mixed-Precision Quantization)を提案する。
論文 参考訳(メタデータ) (2024-10-16T21:34:41Z) - AdaLog: Post-Training Quantization for Vision Transformers with Adaptive Logarithm Quantizer [54.713778961605115]
Vision Transformer (ViT) はコンピュータビジョンコミュニティにおいて最も普及しているバックボーンネットワークの1つである。
本稿では,AdaLog(Adaptive Logarithm AdaLog)量子化器を提案する。
論文 参考訳(メタデータ) (2024-07-17T18:38:48Z) - OutlierTune: Efficient Channel-Wise Quantization for Large Language Models [24.645237670811476]
OutlierTuneは、大規模言語モデルのアクティベーションのための効率的なチャネルごとのポストトレーニング量子化手法である。
提案するフレームワークは実装が容易で、ハードウェア効率が良く、推論中に計算オーバーヘッドがほとんど発生しない。
論文 参考訳(メタデータ) (2024-06-27T02:02:26Z) - PTQ4DiT: Post-training Quantization for Diffusion Transformers [52.902071948957186]
ポストトレーニング量子化(PTQ)は、計算とメモリフットプリントを大幅に削減できる高速でデータ効率のソリューションとして登場した。
提案するPTQ4DiTは,DiTのための特別に設計されたPTQ手法である。
PTQ4DiTは8ビットの精度でDiTの量子化に成功した。
論文 参考訳(メタデータ) (2024-05-25T02:02:08Z) - Towards Next-Level Post-Training Quantization of Hyper-Scale Transformers [10.566264033360282]
ポストトレーニング量子化(PTQ)は、モバイルやテレビなどのエッジデバイスにハイパースケールモデルをデプロイするための有望なソリューションとして登場した。
本稿では,精度と効率のバランスをとる新しいPTQアルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-02-14T05:58:43Z) - Enhancing Computation Efficiency in Large Language Models through Weight and Activation Quantization [12.655230451207956]
本稿では,Large Language Models(LLMs)における後学習量子化(PTQ)に焦点を当てる。
本稿では,アクティベーション量子化対応スケーリング(AQAS)とシーケンス長対応キャリブレーション(SLAC)の2つの革新的な手法を提案する。
我々の技術はタスクの精度を大幅に向上させ、完全精度モデルに匹敵するレベルまで向上することを示した。
論文 参考訳(メタデータ) (2023-11-09T06:19:51Z) - Distribution-Flexible Subset Quantization for Post-Quantizing
Super-Resolution Networks [68.83451203841624]
本稿では,超高分解能ネットワークのためのポストトレーニング量子化手法であるDFSQを提案する。
DFSQは活性化のチャネルワイド正規化を行い、分布フレキシブルなサブセット量子化(SQ)を適用する
6ビットの量子化と8ビットの量子化では完全精度に匹敵する性能を達成し、4ビットの量子化では0.1dBのPSNR低下しか生じない。
論文 参考訳(メタデータ) (2023-05-10T04:19:11Z) - Parameter-Parallel Distributed Variational Quantum Algorithm [7.255056332088222]
変分量子アルゴリズム(VQA)は、ノイズの多いデバイス上での実用的な量子優位性を探究するための有望な短期的手法として登場した。
本稿では,パラメータ並列分散変動量子アルゴリズム(PPD-VQA)を提案する。
この結果から,PSD-VQAは大規模実ワードアプリケーションを扱うために複数の量子プロセッサをコーディネートする実用的なソリューションを提供する可能性が示唆された。
論文 参考訳(メタデータ) (2022-07-31T15:09:12Z) - Quantum circuit architecture search for variational quantum algorithms [88.71725630554758]
本稿では、QAS(Quantum Architecture Search)と呼ばれるリソースと実行時の効率的なスキームを提案する。
QASは、よりノイズの多い量子ゲートを追加することで得られる利点と副作用のバランスをとるために、自動的にほぼ最適アンサッツを求める。
数値シミュレータと実量子ハードウェアの両方に、IBMクラウドを介してQASを実装し、データ分類と量子化学タスクを実現する。
論文 参考訳(メタデータ) (2020-10-20T12:06:27Z) - Q-GADMM: Quantized Group ADMM for Communication Efficient Decentralized Machine Learning [66.18202188565922]
我々はQGADMM(QGADMM)という通信効率の高い分散機械学習(ML)アルゴリズムを提案する。
我々は,凸関数に対するQGADMMの収束性を証明しつつ,モデル化レベルとその確率を適応的に調整する新しい量子化法を開発した。
論文 参考訳(メタデータ) (2019-10-23T10:47:06Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。