論文の概要: OutlierTune: Efficient Channel-Wise Quantization for Large Language Models
- arxiv url: http://arxiv.org/abs/2406.18832v1
- Date: Thu, 27 Jun 2024 02:02:26 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-28 15:37:16.150090
- Title: OutlierTune: Efficient Channel-Wise Quantization for Large Language Models
- Title(参考訳): OutlierTune: 大規模言語モデルのための効率的なチャネルワイズ量子化
- Authors: Jinguang Wang, Yuexi Yin, Haifeng Sun, Qi Qi, Jingyu Wang, Zirui Zhuang, Tingting Yang, Jianxin Liao,
- Abstract要約: OutlierTuneは、大規模言語モデルのアクティベーションのための効率的なチャネルごとのポストトレーニング量子化手法である。
提案するフレームワークは実装が容易で、ハードウェア効率が良く、推論中に計算オーバーヘッドがほとんど発生しない。
- 参考スコア(独自算出の注目度): 24.645237670811476
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Quantizing the activations of large language models (LLMs) has been a significant challenge due to the presence of structured outliers. Most existing methods focus on the per-token or per-tensor quantization of activations, making it difficult to achieve both accuracy and hardware efficiency. To address this problem, we propose OutlierTune, an efficient per-channel post-training quantization (PTQ) method for the activations of LLMs. OutlierTune consists of two components: pre-execution of dequantization and symmetrization. The pre-execution of dequantization updates the model weights by the activation scaling factors, avoiding the internal scaling and costly additional computational overheads brought by the per-channel activation quantization. The symmetrization further reduces the quantization differences arising from the weight updates by ensuring the balanced numerical ranges across different activation channels. OutlierTune is easy to implement and hardware-efficient, introducing almost no additional computational overheads during the inference. Extensive experiments show that the proposed framework outperforms existing methods across multiple different tasks. Demonstrating better generalization, this framework improves the Int6 quantization of the instruction-tuning LLMs, such as OPT-IML, to the same level as half-precision (FP16). Moreover, we have shown that the proposed framework is 1.48x faster than the FP16 implementation while reducing approximately 2x memory usage.
- Abstract(参考訳): 大規模言語モデル(LLM)のアクティベーションの定量化は、構造化された外れ値の存在が大きな課題となっている。
既存のほとんどの手法は、アクティベーションのトーケン単位またはテンソル単位の量子化に焦点を当てており、精度とハードウェア効率の両方を達成することは困難である。
そこで本研究では,LLMの活性化のためのPTQ法であるOutlierTuneを提案する。
OutlierTuneは2つのコンポーネントで構成されている。
Dequantizationの事前実行は、アクティベーションスケーリング要因によってモデルの重みを更新し、内部スケーリングやチャネルごとのアクティベーション量子化による計算オーバーヘッドの増大を回避する。
シンメトリゼーションは、異なるアクティベーションチャネル間のバランスの取れた数値範囲を確保することにより、重量更新による量子化差をさらに減少させる。
OutlierTuneの実装は簡単で、ハードウェア効率も良い。
大規模な実験により、提案するフレームワークは、複数の異なるタスクで既存のメソッドよりも優れていることが示された。
より優れた一般化を示すために、このフレームワークは命令チューニング LLM(OPT-IML など)の Int6 量子化を半精度(FP16)と同じレベルに改善する。
さらに,提案手法はFP16よりも1.48倍高速であり,メモリ使用量を約2倍に削減できることを示した。
関連論文リスト
- MixPE: Quantization and Hardware Co-design for Efficient LLM Inference [16.42907854119748]
MixPEは、大規模言語モデルにおける効率的な低ビット量子化のために設計された、特殊な混合精度処理素子である。
我々は、MixPEが最先端の量子化アクセラレータを2.6倍のスピードアップと1.4倍のエネルギー削減で超えることを示した。
論文 参考訳(メタデータ) (2024-11-25T07:34:53Z) - Advancing Multimodal Large Language Models with Quantization-Aware Scale Learning for Efficient Adaptation [70.22782550540714]
QSLAWと呼ばれるマルチモーダルワームアップに基づく量子化対応スケールルアーニング法
本稿では、QSLAWと呼ばれるマルチモーダルワームアップに基づく量子化対応スケールLeArning手法を提案する。
論文 参考訳(メタデータ) (2024-08-07T12:42:09Z) - Tender: Accelerating Large Language Models via Tensor Decomposition and Runtime Requantization [0.6445087473595953]
大規模言語モデル(LLM)は、機械学習における様々なタスクにおいて優れたパフォーマンスを示す。
LLM推論のデプロイは、高い計算とメモリ要求のために問題となる。
我々は,低精度でLLM推論を効率的に展開できるアルゴリズム-ハードウェア共設計ソリューションであるテンダーを提案する。
論文 参考訳(メタデータ) (2024-06-16T09:51:55Z) - EdgeQAT: Entropy and Distribution Guided Quantization-Aware Training for
the Acceleration of Lightweight LLMs on the Edge [40.85258685379659]
トレーニング後の量子化(PTQ)メソッドは、ウェイト、アクティベーション、KVキャッシュを同時に8ビット以下に定量化する際に品質が低下する。
多くのQAT(Quantization-Aware Training)は、モデルウェイトを定量化し、アクティベーションを未修正のまま残し、エッジ上の推論加速度の量子化の可能性を完全に活用しない。
We propose EdgeQAT, the Entropy and Distribution Guided QAT for the optimization of light LLMs to achieve inference acceleration on Edge devices。
論文 参考訳(メタデータ) (2024-02-16T16:10:38Z) - QUIK: Towards End-to-End 4-Bit Inference on Generative Large Language
Models [57.04178959678024]
重み付けとアクティベーションの両方を4ビットにキャストすることで、大きな生成モデルに対する推論計算の大部分が実行可能であることを示す。
これをQUIKと呼ばれるハイブリッド量子化戦略により実現し、重みとアクティベーションの大部分を4ビットに圧縮する。
我々は、QUIKフォーマットを高効率なレイヤワイドランタイムに適合させるGPUカーネルを提供し、これにより、エンドツーエンドのスループットが3.4倍に向上する。
論文 参考訳(メタデータ) (2023-10-13T17:15:05Z) - Rethinking Channel Dimensions to Isolate Outliers for Low-bit Weight Quantization of Large Language Models [7.485068491216164]
大規模言語モデル(LLM)は、最近、様々なタスクで顕著な成功を収めた。
重みのみの量子化は有望なアプローチであるが、大振幅のアクティベーションアウトレイアのため、サブ-4ビットの量子化は依然として課題である。
本稿では,各入力チャネル内の量子化グループを生成する簡易かつ効果的な手法である,IC単位の量子化を提案する。
論文 参考訳(メタデータ) (2023-09-27T09:48:31Z) - OmniQuant: Omnidirectionally Calibrated Quantization for Large Language Models [57.27101446992148]
大規模言語モデル(LLM)は自然言語処理タスクに革命をもたらした。
近年のPTQ法はメモリフットプリントの削減とLLMの計算効率の向上に有効である。
多様な量子化設定において優れた性能を実現するLLMのOmnidirectly calibrated Quantization手法を提案する。
論文 参考訳(メタデータ) (2023-08-25T02:28:35Z) - FineQuant: Unlocking Efficiency with Fine-Grained Weight-Only
Quantization for LLMs [9.072821427818557]
大規模言語モデル(LLM)は、様々な言語タスクで最先端のパフォーマンスを達成しているが、実用的なデプロイメントには課題がある。
メモリ消費を削減し,LLMの推論を高速化する,効率的な重みのみの量子化法を提案する。
我々は,OPT-175Bや内部MoEモデルのような大規模オープンソースモデルに対するアプローチを評価し,スループットを最大3.65倍に向上しながら,最小限の精度の損失を示す。
論文 参考訳(メタデータ) (2023-08-16T23:57:41Z) - SqueezeLLM: Dense-and-Sparse Quantization [80.32162537942138]
LLMにおける生成推論の主なボトルネックは、単一のバッチ推論のための計算ではなく、メモリ帯域幅である。
学習後量子化フレームワークであるSqueezeLLMを導入し、最大3ビットの超低精度でのロスレス圧縮を実現する。
本フレームワークは,2次情報に基づく最適ビット精度割当を探索する感度ベース非一様量子化法と,2次情報に基づくDense-and-Sparse分解法と,2次情報量割当値と感度重み値を効率的にスパース形式で格納するDense-and-Sparse分解法である。
論文 参考訳(メタデータ) (2023-06-13T08:57:54Z) - Fully Quantized Image Super-Resolution Networks [81.75002888152159]
効率と精度を両立させるためのフル量子化画像超解像フレームワーク(FQSR)を提案する。
我々は、SRResNet、SRGAN、EDSRを含む複数の主流超解像アーキテクチャに量子化スキームを適用した。
低ビット量子化を用いたFQSRは、5つのベンチマークデータセットの完全精度と比較すると、パー性能で実現できる。
論文 参考訳(メタデータ) (2020-11-29T03:53:49Z) - PAMS: Quantized Super-Resolution via Parameterized Max Scale [84.55675222525608]
深部畳み込みニューラルネットワーク(DCNN)は超解像処理(SR)において優位な性能を示した
本稿では,PAMS(Parameterized Max Scale)と呼ばれる新しい量子化手法を提案する。
実験により,提案手法はEDSRやRDNなどの既存のSRモデルを適切に圧縮・高速化できることが示された。
論文 参考訳(メタデータ) (2020-11-09T06:16:05Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。