論文の概要: External Reliable Information-enhanced Multimodal Contrastive Learning for Fake News Detection
- arxiv url: http://arxiv.org/abs/2503.03107v1
- Date: Wed, 05 Mar 2025 02:07:38 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-06 15:53:44.824242
- Title: External Reliable Information-enhanced Multimodal Contrastive Learning for Fake News Detection
- Title(参考訳): フェイクニュース検出のための外部信頼度情報強化型マルチモーダルコントラスト学習
- Authors: Biwei Cao, Qihang Wu, Jiuxin Cao, Bo Liu, Jie Gui,
- Abstract要約: ERIC-FNDは、フェイクニュース検出のための情報強化型マルチモーダルコントラスト学習フレームワークである。
実験は、X(Twitter)とWeiboという、さまざまな言語で一般的に使用されている2つのデータセットで行われます。
- 参考スコア(独自算出の注目度): 10.575512607941839
- License:
- Abstract: With the rapid development of the Internet, the information dissemination paradigm has changed and the efficiency has been improved greatly. While this also brings the quick spread of fake news and leads to negative impacts on cyberspace. Currently, the information presentation formats have evolved gradually, with the news formats shifting from texts to multimodal contents. As a result, detecting multimodal fake news has become one of the research hotspots. However, multimodal fake news detection research field still faces two main challenges: the inability to fully and effectively utilize multimodal information for detection, and the low credibility or static nature of the introduced external information, which limits dynamic updates. To bridge the gaps, we propose ERIC-FND, an external reliable information-enhanced multimodal contrastive learning framework for fake news detection. ERIC-FND strengthens the representation of news contents by entity-enriched external information enhancement method. It also enriches the multimodal news information via multimodal semantic interaction method where the multimodal constrative learning is employed to make different modality representations learn from each other. Moreover, an adaptive fusion method is taken to integrate the news representations from different dimensions for the eventual classification. Experiments are done on two commonly used datasets in different languages, X (Twitter) and Weibo. Experiment results demonstrate that our proposed model ERIC-FND outperforms existing state-of-the-art fake news detection methods under the same settings.
- Abstract(参考訳): インターネットの急速な発展に伴い、情報発信パラダイムが変化し、効率が大幅に向上した。
これによりフェイクニュースが急速に広まり、サイバースペースに悪影響を及ぼす。
現在、情報提示形式は徐々に進化し、ニュース形式はテキストからマルチモーダルコンテンツへと変化している。
その結果、マルチモーダルフェイクニュースの検出が研究ホットスポットの1つとなった。
しかし、マルチモーダルフェイクニュース検出研究分野は、検出にマルチモーダル情報を完全かつ効果的に利用できないことと、動的更新を制限する外部情報の信頼性の低い、あるいは静的な性質の2つの大きな課題に直面している。
このギャップを埋めるため、偽ニュース検出のための外部信頼度の高いマルチモーダルコントラスト学習フレームワークERIC-FNDを提案する。
ERIC-FNDは、エンティティ強化外部情報拡張法によるニュースコンテンツの表現を強化する。
また、多モーダルなセマンティックな相互作用を通じて、多モーダルなニュース情報を豊かにし、多モーダルな提案型学習を用いて異なるモーダルな表現を互いに学習する。
さらに,異なる次元のニュース表現を統合するために,適応的融合法を用いる。
実験は、X(Twitter)とWeiboという、さまざまな言語で一般的に使用されている2つのデータセットで行われます。
実験の結果,提案モデルであるERIC-FNDは,既存の偽ニュース検出手法よりも優れていた。
関連論文リスト
- Modality Interactive Mixture-of-Experts for Fake News Detection [13.508494216511094]
フェイクニュース検出のためのModality Interactive Mixture-of-Experts(MIMoE-FND)を提案する。
MIMoE-FNDは、マルチモーダルフェイクニュース検出を強化するために設計された、新しい階層型Mixture-of-Expertsフレームワークである。
2つの言語にまたがる3つの実世界のベンチマークに対する我々のアプローチを評価し、最先端の手法と比較して優れた性能を示す。
論文 参考訳(メタデータ) (2025-01-21T16:49:00Z) - A Self-Learning Multimodal Approach for Fake News Detection [35.98977478616019]
偽ニュース分類のための自己学習型マルチモーダルモデルを提案する。
このモデルは、ラベル付きデータを必要としない機能抽出のための堅牢な手法であるコントラスト学習を利用する。
公開データセットを用いた実験結果から,提案モデルがいくつかの最先端の分類手法より優れていることが示された。
論文 参考訳(メタデータ) (2024-12-08T07:41:44Z) - VMID: A Multimodal Fusion LLM Framework for Detecting and Identifying Misinformation of Short Videos [14.551693267228345]
本稿では,マルチモーダル情報に基づく新しいフェイクニュース検出手法を提案する。
提案フレームワークは,ビデオにマルチモーダル機能を組み込むことで,偽ニュース検出の精度と信頼性を大幅に向上させる。
論文 参考訳(メタデータ) (2024-11-15T08:20:26Z) - Detect, Investigate, Judge and Determine: A Knowledge-guided Framework for Few-shot Fake News Detection [50.079690200471454]
Few-Shot Fake News Detection (FS-FND) は、極めて低リソースのシナリオにおいて、非正確なニュースを実際のニュースと区別することを目的としている。
ソーシャルメディア上でのフェイクニュースの拡散や有害な影響により、このタスクは注目を集めている。
本稿では,内外からLLMを増強するDual-perspective Knowledge-Guided Fake News Detection (DKFND)モデルを提案する。
論文 参考訳(メタデータ) (2024-07-12T03:15:01Z) - Detecting and Grounding Multi-Modal Media Manipulation and Beyond [93.08116982163804]
マルチモーダルフェイクメディア(DGM4)の新たな研究課題について述べる。
DGM4は、マルチモーダルメディアの真正性を検出するだけでなく、操作されたコンテンツも検出することを目的としている。
本稿では,異なるモーダル間のきめ細かい相互作用を完全に捉えるために,新しい階層型マルチモーダルマニピュレーションrEasoning tRansformer(HAMMER)を提案する。
論文 参考訳(メタデータ) (2023-09-25T15:05:46Z) - Multi-modal Fake News Detection on Social Media via Multi-grained
Information Fusion [21.042970740577648]
偽ニュース検出のためのMMFN(Multi-fine Multi-modal Fusion Network)を提案する。
そこで我々は,トランスフォーマーを用いた事前学習モデルを用いて,テキストと画像からトークンレベルの特徴を符号化する。
マルチモーダルモジュールは、CLIPエンコーダでエンコードされた粗い機能を考慮して、きめ細かい機能をフューズする。
論文 参考訳(メタデータ) (2023-04-03T09:13:59Z) - Multiverse: Multilingual Evidence for Fake News Detection [71.51905606492376]
Multiverseは、偽ニュースの検出に使用できる多言語エビデンスに基づく新機能である。
偽ニュース検出機能としての言語間証拠の使用仮説を確認した。
論文 参考訳(メタデータ) (2022-11-25T18:24:17Z) - Multimodal Fake News Detection with Adaptive Unimodal Representation
Aggregation [28.564442206829625]
AURAは、適応的な一助表現アグリゲーションを備えたマルチモーダルフェイクニュース検出ネットワークである。
我々は,一様および多様の表現に従って,粗いレベルの偽ニュース検出とクロスモーダルな共存学習を行う。
WeiboとGossipcopの実験は、AURAがいくつかの最先端のFNDスキームに勝つことを証明している。
論文 参考訳(メタデータ) (2022-06-12T14:06:55Z) - VMSMO: Learning to Generate Multimodal Summary for Video-based News
Articles [63.32111010686954]
マルチモーダル出力(VMSMO)を用いたビデオベースマルチモーダル要約の課題を提案する。
このタスクの主な課題は、ビデオの時間的依存性と記事の意味を共同でモデル化することである。
本稿では,デュアルインタラクションモジュールとマルチモーダルジェネレータからなるDual-Interaction-based Multimodal Summarizer (DIMS)を提案する。
論文 参考訳(メタデータ) (2020-10-12T02:19:16Z) - Machine Learning Explanations to Prevent Overtrust in Fake News
Detection [64.46876057393703]
本研究では、ニュースレビュープラットフォームに組み込んだ説明可能なAIアシスタントが、フェイクニュースの拡散と戦う効果について検討する。
我々は、ニュースレビューと共有インターフェースを設計し、ニュース記事のデータセットを作成し、4つの解釈可能なフェイクニュース検出アルゴリズムを訓練する。
説明可能なAIシステムについてより深く理解するために、説明プロセスにおけるユーザエンゲージメント、メンタルモデル、信頼、パフォーマンス対策の相互作用について議論する。
論文 参考訳(メタデータ) (2020-07-24T05:42:29Z) - Multimodal Categorization of Crisis Events in Social Media [81.07061295887172]
本稿では,画像とテキストの両方を入力として利用するマルチモーダル融合法を提案する。
特に、弱モダリティから非形式的および誤解を招くコンポーネントをフィルタリングできるクロスアテンションモジュールを導入する。
本手法は,3つの危機関連タスクにおいて,一様アプローチと強いマルチモーダルベースラインを大きなマージンで上回ることを示す。
論文 参考訳(メタデータ) (2020-04-10T06:31:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。