論文の概要: The Devil Is in the Details: Tackling Unimodal Spurious Correlations for Generalizable Multimodal Reward Models
- arxiv url: http://arxiv.org/abs/2503.03122v1
- Date: Wed, 05 Mar 2025 02:37:41 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-06 15:53:44.213262
- Title: The Devil Is in the Details: Tackling Unimodal Spurious Correlations for Generalizable Multimodal Reward Models
- Title(参考訳): Devil is in the details: Tackling Unimodal Spurious correlations for generalizable Multimodal Reward Models
- Authors: Zichao Li, Xueru Wen, Jie Lou, Yuqiu Ji, Yaojie Lu, Xianpei Han, Debing Zhang, Le Sun,
- Abstract要約: マルチモーダル・リワードモデル(MM-RM)は,大規模言語モデル(LLM)と人間の嗜好の整合に不可欠である。
MM-RMは、不動の突発的相関に依存するため、アウト・オブ・ディストリビューションデータへの一般化に苦慮することが多い。
本稿では,この問題を動的にトレーニングサンプルを再重み付けすることで軽減する,ショートカット対応MM-RM学習アルゴリズムを提案する。
- 参考スコア(独自算出の注目度): 31.81567038783558
- License:
- Abstract: Multimodal Reward Models (MM-RMs) are crucial for aligning Large Language Models (LLMs) with human preferences, particularly as LLMs increasingly interact with multimodal data. However, we find that MM-RMs trained on existing datasets often struggle to generalize to out-of-distribution data due to their reliance on unimodal spurious correlations, primarily text-only shortcuts within the training distribution, which prevents them from leveraging true multimodal reward functions. To address this, we introduce a Shortcut-aware MM-RM learning algorithm that mitigates this issue by dynamically reweighting training samples, shifting the distribution toward better multimodal understanding, and reducing dependence on unimodal spurious correlations. Our experiments demonstrate significant improvements in generalization, downstream task performance, and scalability, establishing a more robust framework for multimodal reward modeling.
- Abstract(参考訳): マルチモーダル・リワード・モデル(MM-RM)は、大規模言語モデル(LLM)と人間の嗜好の整合に不可欠である。
しかし、既存のデータセットでトレーニングされたMM-RMは、トレーニング分布内のテキストのみのショートカットなど、非モーダルな急激な相関に頼っているため、配布外データへの一般化に苦慮することが多いため、真のマルチモーダル報酬関数を活用できない。
そこで,本稿では,トレーニングサンプルを動的に再重み付けし,分布をマルチモーダル理解にシフトさせ,非モーダルスプリアス相関への依存を減らすことで,この問題を緩和する,ショートカット対応MM-RM学習アルゴリズムを提案する。
我々の実験は、一般化、ダウンストリームタスク性能、スケーラビリティの大幅な改善を示し、マルチモーダル報酬モデリングのためのより堅牢なフレームワークを構築した。
関連論文リスト
- Asymmetric Reinforcing against Multi-modal Representation Bias [59.685072206359855]
マルチモーダル表現バイアス(ARM)に対する非対称強化法を提案する。
我々のARMは、条件付き相互情報を通じて支配的なモダリティを表現する能力を維持しながら、弱いモダリティを動的に強化する。
我々はマルチモーダル学習の性能を著しく改善し、不均衡なマルチモーダル学習の軽減に顕著な進展をもたらした。
論文 参考訳(メタデータ) (2025-01-02T13:00:06Z) - Multimodal Fusion Balancing Through Game-Theoretic Regularization [22.959030061257533]
アンサンブルのような単純なベースラインを超越したマルチモーダルモデルの訓練には,現在のバランス手法が苦戦していることを示す。
マルチモーダルトレーニングにおけるすべてのモダリティが十分にトレーニングされていること、新しいモダリティからの学習が一貫してパフォーマンスを改善することを保証するにはどうすればよいのか?
本稿では,相互情報(MI)分解にインスパイアされた新たな損失成分であるMCRを提案する。
論文 参考訳(メタデータ) (2024-11-11T19:53:05Z) - Uni-MoE: Scaling Unified Multimodal LLMs with Mixture of Experts [54.529880848937104]
そこで我々は,MoEアーキテクチャをUni-MoEと呼ぶ一貫したMLLMを開発し,様々なモダリティを扱えるようにした。
具体的には、統一マルチモーダル表現のためのコネクタを持つモダリティ特化エンコーダを特徴とする。
マルチモーダルデータセットの包括的集合を用いた命令調整Uni-MoEの評価を行った。
論文 参考訳(メタデータ) (2024-05-18T12:16:01Z) - Simplifying Multimodality: Unimodal Approach to Multimodal Challenges in Radiology with General-Domain Large Language Model [3.012719451477384]
MID-Mは,汎用言語モデル(LLM)のコンテキスト内学習機能を利用して,画像記述によるマルチモーダルデータの処理を行う新しいフレームワークである。
MID-Mは、タスク固有の微調整 LMM や他の汎用ドメインと同等または優れた性能を達成し、ドメイン固有の訓練やマルチモーダルデータによる事前トレーニングは行わない。
データ品質問題に対するMID-Mの堅牢性は、実世界の医療ドメインアプリケーションにおいて実用性を示している。
論文 参考訳(メタデータ) (2024-04-29T13:23:33Z) - Cross-Modal Prototype based Multimodal Federated Learning under Severely
Missing Modality [31.727012729846333]
MFCPL (Multimodal Federated Cross Prototype Learning) は、MFLにおいて、高度に欠落したモダリティの下での新たなアプローチである。
MFCPLは、モダリティ共有レベルにおいて、クロスモーダル正規化とクロスモーダルコントラスト機構を備えたモダリティ固有レベルと共に多様なモダリティ知識を提供する。
提案手法では,モーダリティに特有な特徴の正規化を実現するために,クロスモーダルアライメントを導入し,全体的な性能を向上させる。
論文 参考訳(メタデータ) (2024-01-25T02:25:23Z) - Unified Multi-modal Unsupervised Representation Learning for
Skeleton-based Action Understanding [62.70450216120704]
教師なしの事前訓練は骨格に基づく行動理解において大きな成功を収めた。
我々はUmURLと呼ばれる統一マルチモーダル非教師なし表現学習フレームワークを提案する。
UmURLは効率的な早期融合戦略を利用して、マルチモーダル機能を単一ストリームで共同でエンコードする。
論文 参考訳(メタデータ) (2023-11-06T13:56:57Z) - Improving Discriminative Multi-Modal Learning with Large-Scale
Pre-Trained Models [51.5543321122664]
本稿では,大規模な事前学習型ユニモーダルモデルを用いて,識別型マルチモーダル学習を向上する方法について検討する。
MMLoRA(Multi-Modal Low-Rank Adaptation Learning)を導入する。
論文 参考訳(メタデータ) (2023-10-08T15:01:54Z) - Unimodal Training-Multimodal Prediction: Cross-modal Federated Learning
with Hierarchical Aggregation [16.308470947384134]
HA-Fedformerは新しいトランスフォーマーベースのモデルで、クライアントでのアンモダルデータセットのみを使用して、単一モダルトレーニングを可能にする。
我々は,マルコフ連鎖モンテカルロサンプリングを用いた局所エンコーダの不確実性を考慮したアグリゲーション法を開発した。
一般的な感情分析ベンチマークであるCMU-MOSIとCMU-MOSEIの実験は、HA-Fedformerが最先端のマルチモーダルモデルを大幅に上回ることを示した。
論文 参考訳(メタデータ) (2023-03-27T07:07:33Z) - Correlation Information Bottleneck: Towards Adapting Pretrained
Multimodal Models for Robust Visual Question Answering [63.87200781247364]
相関情報ボトルネック (CIB) は圧縮と表現の冗長性のトレードオフを求める。
マルチモーダル入力と表現の相互情報に対して,理論上界を厳密に導出する。
論文 参考訳(メタデータ) (2022-09-14T22:04:10Z) - Relating by Contrasting: A Data-efficient Framework for Multimodal
Generative Models [86.9292779620645]
生成モデル学習のための対照的なフレームワークを開発し、モダリティ間の共通性だけでなく、「関連」と「関連しない」マルチモーダルデータの区別によってモデルを訓練することができる。
提案手法では, 生成モデルを用いて, 関係のないサンプルから関連サンプルを正確に識別し, ラベルのない多モードデータの利用が可能となる。
論文 参考訳(メタデータ) (2020-07-02T15:08:11Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。