On Expert Estimation in Hierarchical Mixture of Experts: Beyond Softmax Gating Functions
- URL: http://arxiv.org/abs/2410.02935v2
- Date: Thu, 06 Mar 2025 21:09:01 GMT
- Title: On Expert Estimation in Hierarchical Mixture of Experts: Beyond Softmax Gating Functions
- Authors: Huy Nguyen, Xing Han, Carl Harris, Suchi Saria, Nhat Ho,
- Abstract summary: Hierarchical Mixture of Experts (HMoE) excels in handling complex inputs and improving performance on targeted tasks.<n>Our analysis highlights the advantages of using the Laplace gating function over the traditional Softmax gating within the HMoE frameworks.<n> Empirical validation across diverse scenarios supports these theoretical claims.
- Score: 29.130355774088205
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: With the growing prominence of the Mixture of Experts (MoE) architecture in developing large-scale foundation models, we investigate the Hierarchical Mixture of Experts (HMoE), a specialized variant of MoE that excels in handling complex inputs and improving performance on targeted tasks. Our analysis highlights the advantages of using the Laplace gating function over the traditional Softmax gating within the HMoE frameworks. We theoretically demonstrate that applying the Laplace gating function at both levels of the HMoE model helps eliminate undesirable parameter interactions caused by the Softmax gating and, therefore, accelerates the expert convergence as well as enhances the expert specialization. Empirical validation across diverse scenarios supports these theoretical claims. This includes large-scale multimodal tasks, image classification, and latent domain discovery and prediction tasks, where our modified HMoE models show great performance improvements compared to the conventional HMoE models.
Related papers
- Convergence Rates for Softmax Gating Mixture of Experts [78.3687645289918]
Mixture of experts (MoE) has emerged as an effective framework to advance the efficiency and scalability of machine learning models.
Central to the success of MoE is an adaptive softmax gating mechanism which takes responsibility for determining the relevance of each expert to a given input and then dynamically assigning experts their respective weights.
We perform a convergence analysis of parameter estimation and expert estimation under the MoE equipped with the standard softmax gating or its variants, including a dense-to-sparse gating and a hierarchical softmax gating.
arXiv Detail & Related papers (2025-03-05T06:11:24Z) - OMoE: Diversifying Mixture of Low-Rank Adaptation by Orthogonal Finetuning [3.8813502422318127]
Building mixture-of-experts (MoE) architecture for Low-rank adaptation (LoRA) is emerging as a potential direction in parameter-efficient fine-tuning (PEFT)
We first conduct qualitative analysis to indicate that experts collapse to similar representations in vanilla MoE, limiting the capacity of modular design and computational efficiency.
Motivated by these findings, we propose Orthogonal Mixture-of-Experts (OMoE)
Our method is simple and alleviates memory bottlenecks, as it incurs minimal experts compared to vanilla MoE models.
arXiv Detail & Related papers (2025-01-17T09:27:08Z) - Quadratic Gating Functions in Mixture of Experts: A Statistical Insight [28.17124843417577]
Mixture of Experts (MoE) models are highly effective in scaling model capacity while preserving computational efficiency.
We establish a novel connection between MoE frameworks and attention mechanisms, demonstrating how quadratic gating can serve as a more expressive and efficient alternative.
arXiv Detail & Related papers (2024-10-15T03:06:37Z) - Retraining-Free Merging of Sparse Mixture-of-Experts via Hierarchical Clustering [14.858134039539697]
We propose Hierarchical Clustering for Sparsely activated Mixture of Experts (HC-SMoE)
HC-SMoE is a task-agnostic expert merging framework that reduces SMoE model parameters without retraining.
We validate our approach through extensive experiments on eight zero-shot language tasks and demonstrate its effectiveness in large-scale SMoE models such as Qwen and Mixtral.
arXiv Detail & Related papers (2024-10-11T07:36:14Z) - Upcycling Instruction Tuning from Dense to Mixture-of-Experts via Parameter Merging [36.0133566024214]
Upcycling Instruction Tuning (UpIT) is a data-efficient approach for tuning a dense pre-trained model into a MoE instruction model.
To ensure each specialized expert in the MoE model works as expected, we select a small amount of seed data that each expert excels to pre-optimize the router.
arXiv Detail & Related papers (2024-10-02T14:48:22Z) - Diversifying the Expert Knowledge for Task-Agnostic Pruning in Sparse Mixture-of-Experts [75.85448576746373]
We propose a method of grouping and pruning similar experts to improve the model's parameter efficiency.
We validate the effectiveness of our method by pruning three state-of-the-art MoE architectures.
The evaluation shows that our method outperforms other model pruning methods on a range of natural language tasks.
arXiv Detail & Related papers (2024-07-12T17:25:02Z) - Let the Expert Stick to His Last: Expert-Specialized Fine-Tuning for Sparse Architectural Large Language Models [24.915387910764082]
Expert-Specialized Fine-Tuning, or ESFT, tunes the experts most relevant to downstream tasks while freezing the other experts and modules.
MoE models with finer-grained experts are more advantageous in selecting the combination of experts that are most relevant to downstream tasks.
arXiv Detail & Related papers (2024-07-02T03:11:13Z) - Sigmoid Gating is More Sample Efficient than Softmax Gating in Mixture of Experts [78.3687645289918]
We show that the sigmoid gating function enjoys a higher sample efficiency than the softmax gating for the statistical task of expert estimation.
We find that experts formulated as feed-forward networks with commonly used activation such as ReLU and GELU enjoy faster convergence rates under the sigmoid gating.
arXiv Detail & Related papers (2024-05-22T21:12:34Z) - Harder Tasks Need More Experts: Dynamic Routing in MoE Models [58.18526590138739]
We introduce a novel dynamic expert selection framework for Mixture of Experts (MoE) models.
Our method dynamically selects experts based on the confidence level in expert selection for each input.
arXiv Detail & Related papers (2024-03-12T13:41:15Z) - On Least Square Estimation in Softmax Gating Mixture of Experts [78.3687645289918]
We investigate the performance of the least squares estimators (LSE) under a deterministic MoE model.
We establish a condition called strong identifiability to characterize the convergence behavior of various types of expert functions.
Our findings have important practical implications for expert selection.
arXiv Detail & Related papers (2024-02-05T12:31:18Z) - Inverse Reinforcement Learning with Sub-optimal Experts [56.553106680769474]
We study the theoretical properties of the class of reward functions that are compatible with a given set of experts.
Our results show that the presence of multiple sub-optimal experts can significantly shrink the set of compatible rewards.
We analyze a uniform sampling algorithm that results in being minimax optimal whenever the sub-optimal experts' performance level is sufficiently close to the one of the optimal agent.
arXiv Detail & Related papers (2024-01-08T12:39:25Z) - Omni-SMoLA: Boosting Generalist Multimodal Models with Soft Mixture of Low-rank Experts [74.40198929049959]
Large multi-modal models (LMMs) exhibit remarkable performance across numerous tasks.
generalist LMMs often suffer from performance degradation when tuned over a large collection of tasks.
We propose Omni-SMoLA, an architecture that uses the Soft MoE approach to mix many multimodal low rank experts.
arXiv Detail & Related papers (2023-12-01T23:04:27Z) - A General Theory for Softmax Gating Multinomial Logistic Mixture of Experts [28.13187489224953]
We propose a novel class of modified softmax gating functions which transform the input before delivering them to the gating functions.
As a result, the previous interaction disappears and the parameter estimation rates are significantly improved.
arXiv Detail & Related papers (2023-10-22T05:32:19Z) - MoEC: Mixture of Expert Clusters [93.63738535295866]
Sparsely Mixture of Experts (MoE) has received great interest due to its promising scaling capability with affordable computational overhead.
MoE converts dense layers into sparse experts, and utilizes a gated routing network to make experts conditionally activated.
However, as the number of experts grows, MoE with outrageous parameters suffers from overfitting and sparse data allocation.
arXiv Detail & Related papers (2022-07-19T06:09:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.