From Human Annotation to LLMs: SILICON Annotation Workflow for Management Research
- URL: http://arxiv.org/abs/2412.14461v2
- Date: Thu, 20 Feb 2025 20:01:08 GMT
- Title: From Human Annotation to LLMs: SILICON Annotation Workflow for Management Research
- Authors: Xiang Cheng, Raveesh Mayya, João Sedoc,
- Abstract summary: Large Language Models (LLMs) provide a cost-effective and efficient alternative to human annotation.<n>This paper introduces the SILICON" (Systematic Inference with LLMs for Information Classification and Notation) workflow.<n>The workflow integrates established principles of human annotation with systematic prompt optimization and model selection.
- Score: 13.818244562506138
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Unstructured text data annotation and analysis are fundamental to management research, often relying on human annotators through crowdsourcing platforms. While Large Language Models (LLMs) promise to provide a cost-effective and efficient alternative to human annotation, there lacks a systematic workflow that evaluate when LLMs are suitable or how to proceed with LLM-based text annotation in a reproducible manner. This paper addresses this methodological gap by introducing the ``SILICON" (Systematic Inference with LLMs for Information Classification and Notation) workflow. The workflow integrates established principles of human annotation with systematic prompt optimization and model selection, addressing challenges such as developing robust annotation guidelines, establishing high-quality human baselines, optimizing prompts, and ensuring reproducibility across LLMs. We validate the SILICON workflow through seven case studies covering common management research tasks. Our findings highlight the importance of validating annotation guideline agreement, the superiority of expert-developed human baselines over crowdsourced ones, the iterative nature of prompt optimization, and the necessity of testing multiple LLMs. We also find that LLMs agree well with expert annotations in most cases but show low agreement in more complex multi-label classification tasks. Notably, we propose a regression-based methodology to empirically compare LLM outputs across prompts and models. Our workflow advances management research by establishing rigorous, transparent, and reproducible processes for LLM-based annotation. We provide practical guidance for researchers to effectively navigate the evolving landscape of generative AI tools.
Related papers
- From Prompts to Templates: A Systematic Prompt Template Analysis for Real-world LLMapps [20.549178260624043]
Large Language Models (LLMs) have revolutionized human-AI interaction by enabling intuitive task execution through natural language prompts.
Small variations in structure or wording can result in substantial differences in output.
This paper presents a comprehensive analysis of prompt templates in practical LLMapps.
arXiv Detail & Related papers (2025-04-02T18:20:06Z) - Latent Factor Models Meets Instructions: Goal-conditioned Latent Factor Discovery without Task Supervision [50.45597801390757]
Instruct-LF is a goal-oriented latent factor discovery system.
It integrates instruction-following ability with statistical models to handle noisy datasets.
arXiv Detail & Related papers (2025-02-21T02:03:08Z) - A Framework for Using LLMs for Repository Mining Studies in Empirical Software Engineering [12.504438766461027]
Large Language Models (LLMs) have transformed Software Engineering (SE) by providing innovative methods for analyzing software repositories.<n>Our research packages a framework, coined Prompt Refinement and Insights for Mining Empirical Software repositories (PRIMES)<n>Our findings indicate that standardizing prompt engineering and using PRIMES can enhance the reliability and accuracy of studies utilizing LLMs.
arXiv Detail & Related papers (2024-11-15T06:08:57Z) - The Ultimate Guide to Fine-Tuning LLMs from Basics to Breakthroughs: An Exhaustive Review of Technologies, Research, Best Practices, Applied Research Challenges and Opportunities [0.35998666903987897]
This report examines the fine-tuning of Large Language Models (LLMs)
It outlines the historical evolution of LLMs from traditional Natural Language Processing (NLP) models to their pivotal role in AI.
The report introduces a structured seven-stage pipeline for fine-tuning LLMs.
arXiv Detail & Related papers (2024-08-23T14:48:02Z) - Leveraging the Power of LLMs: A Fine-Tuning Approach for High-Quality Aspect-Based Summarization [25.052557735932535]
Large language models (LLMs) have demonstrated the potential to revolutionize diverse tasks within natural language processing.
This paper explores the potential of fine-tuning LLMs for the aspect-based summarization task.
We evaluate the impact of fine-tuning open-source foundation LLMs, including Llama2, Mistral, Gemma and Aya, on a publicly available domain-specific aspect based summary dataset.
arXiv Detail & Related papers (2024-08-05T16:00:21Z) - Systematic Task Exploration with LLMs: A Study in Citation Text Generation [63.50597360948099]
Large language models (LLMs) bring unprecedented flexibility in defining and executing complex, creative natural language generation (NLG) tasks.
We propose a three-component research framework that consists of systematic input manipulation, reference data, and output measurement.
We use this framework to explore citation text generation -- a popular scholarly NLP task that lacks consensus on the task definition and evaluation metric.
arXiv Detail & Related papers (2024-07-04T16:41:08Z) - RePrompt: Planning by Automatic Prompt Engineering for Large Language Models Agents [27.807695570974644]
We propose a novel method, textscRePrompt, which does agradient descent"-like approach to optimize the step-by-step instructions in the prompts given to LLM agents.
By leveraging intermediate feedback, textscRePrompt can optimize the prompt without the need for a final solution checker.
arXiv Detail & Related papers (2024-06-17T01:23:11Z) - Improve Temporal Awareness of LLMs for Sequential Recommendation [61.723928508200196]
Large language models (LLMs) have demonstrated impressive zero-shot abilities in solving a wide range of general-purpose tasks.
LLMs fall short in recognizing and utilizing temporal information, rendering poor performance in tasks that require an understanding of sequential data.
We propose three prompting strategies to exploit temporal information within historical interactions for LLM-based sequential recommendation.
arXiv Detail & Related papers (2024-05-05T00:21:26Z) - LLM Inference Unveiled: Survey and Roofline Model Insights [62.92811060490876]
Large Language Model (LLM) inference is rapidly evolving, presenting a unique blend of opportunities and challenges.
Our survey stands out from traditional literature reviews by not only summarizing the current state of research but also by introducing a framework based on roofline model.
This framework identifies the bottlenecks when deploying LLMs on hardware devices and provides a clear understanding of practical problems.
arXiv Detail & Related papers (2024-02-26T07:33:05Z) - How Can LLM Guide RL? A Value-Based Approach [68.55316627400683]
Reinforcement learning (RL) has become the de facto standard practice for sequential decision-making problems by improving future acting policies with feedback.
Recent developments in large language models (LLMs) have showcased impressive capabilities in language understanding and generation, yet they fall short in exploration and self-improvement capabilities.
We develop an algorithm named LINVIT that incorporates LLM guidance as a regularization factor in value-based RL, leading to significant reductions in the amount of data needed for learning.
arXiv Detail & Related papers (2024-02-25T20:07:13Z) - Large Language Models for Data Annotation and Synthesis: A Survey [49.8318827245266]
This survey focuses on the utility of Large Language Models for data annotation and synthesis.
It includes an in-depth taxonomy of data types that LLMs can annotate, a review of learning strategies for models utilizing LLM-generated annotations, and a detailed discussion of the primary challenges and limitations associated with using LLMs for data annotation and synthesis.
arXiv Detail & Related papers (2024-02-21T00:44:04Z) - ALLURE: Auditing and Improving LLM-based Evaluation of Text using
Iterative In-Context-Learning [7.457517083017178]
Large language models (LLMs) are used for evaluation of text generated by humans and AI alike.
Despite their utility, LLMs exhibit distinct failure modes, necessitating a thorough audit and improvement of their text evaluation capabilities.
Here we introduce ALLURE, a systematic approach to Auditing Large Language Models Understanding and Reasoning Errors.
arXiv Detail & Related papers (2023-09-24T17:15:58Z) - On Learning to Summarize with Large Language Models as References [101.79795027550959]
Large language models (LLMs) are favored by human annotators over the original reference summaries in commonly used summarization datasets.
We study an LLM-as-reference learning setting for smaller text summarization models to investigate whether their performance can be substantially improved.
arXiv Detail & Related papers (2023-05-23T16:56:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.