論文の概要: Benchmarking Dynamic SLO Compliance in Distributed Computing Continuum Systems
- arxiv url: http://arxiv.org/abs/2503.03274v1
- Date: Wed, 05 Mar 2025 08:56:26 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-06 15:52:52.755639
- Title: Benchmarking Dynamic SLO Compliance in Distributed Computing Continuum Systems
- Title(参考訳): 分散コンピューティング連続システムにおける動的SLOコンプライアンスのベンチマーク
- Authors: Alfreds Lapkovskis, Boris Sedlak, Sindri Magnússon, Schahram Dustdar, Praveen Kumar Donta,
- Abstract要約: 大規模アーキテクチャにおけるサービスレベルオブジェクト(SLO)は、その異種性やさまざまなサービス要件のために困難である。
神経科学の新しい手法であるActive Inferenceのベンチマークを、3つの確立された強化学習アルゴリズムに対して提示する。
アクティブ推論はDCCSにおけるSLOコンプライアンスを保証するための有望なアプローチであり、低メモリ使用率、安定したCPU利用、高速収束を提供する。
- 参考スコア(独自算出の注目度): 9.820223170841219
- License:
- Abstract: Ensuring Service Level Objectives (SLOs) in large-scale architectures, such as Distributed Computing Continuum Systems (DCCS), is challenging due to their heterogeneous nature and varying service requirements across different devices and applications. Additionally, unpredictable workloads and resource limitations lead to fluctuating performance and violated SLOs. To improve SLO compliance in DCCS, one possibility is to apply machine learning; however, the design choices are often left to the developer. To that extent, we provide a benchmark of Active Inference -- an emerging method from neuroscience -- against three established reinforcement learning algorithms (Deep Q-Network, Advantage Actor-Critic, and Proximal Policy Optimization). We consider a realistic DCCS use case: an edge device running a video conferencing application alongside a WebSocket server streaming videos. Using one of the respective algorithms, we continuously monitor key performance metrics, such as latency and bandwidth usage, to dynamically adjust parameters -- including the number of streams, frame rate, and resolution -- to optimize service quality and user experience. To test algorithms' adaptability to constant system changes, we simulate dynamically changing SLOs and both instant and gradual data-shift scenarios, such as network bandwidth limitations and fluctuating device thermal states. Although the evaluated algorithms all showed advantages and limitations, our findings demonstrate that Active Inference is a promising approach for ensuring SLO compliance in DCCS, offering lower memory usage, stable CPU utilization, and fast convergence.
- Abstract(参考訳): 分散コンピューティング連続システム(DCCS)のような大規模アーキテクチャにおけるサービスレベルオブジェクト(SLO)の確立は、その異種性やさまざまなデバイスやアプリケーションにまたがるさまざまなサービス要件のために困難である。
さらに、予測不可能なワークロードとリソース制限は、パフォーマンスを変動させ、SLOに違反します。
DCCSにおけるSLOコンプライアンスを改善するために、マシンラーニングを適用する可能性があるが、設計選択はしばしば開発者に委ねられている。
その範囲で、我々は、神経科学の新しい手法であるアクティブ推論のベンチマークを、確立された3つの強化学習アルゴリズム(ディープQネットワーク、アドバンテージアクター批判、プロキシポリシー最適化)に対して提供します。
WebSocketサーバのストリーミングビデオと並行してビデオ会議アプリケーションを実行するエッジデバイスである。
それぞれのアルゴリズムの1つを使用して、レイテンシや帯域幅の使用といった重要なパフォーマンス指標を継続的に監視し、パラメータ(ストリーム数、フレームレート、解像度など)を動的に調整して、サービス品質とユーザエクスペリエンスを最適化します。
一定のシステム変化に対するアルゴリズムの適応性をテストするため、動的に変化するSLOと、ネットワーク帯域幅制限や変動するデバイス熱状態といった、瞬時および漸進的なデータシフトシナリオをシミュレートする。
評価アルゴリズムはいずれも長所と短所を示したが,この結果から,Active InferenceはDCCSにおけるSLOコンプライアンスを保証するための有望なアプローチであり,メモリ使用率の低下,CPU使用率の安定,高速収束を実現していることがわかった。
関連論文リスト
- EdgeMLBalancer: A Self-Adaptive Approach for Dynamic Model Switching on Resource-Constrained Edge Devices [0.0]
エッジデバイス上の機械学習は、リソース制約のある環境でリアルタイムAIアプリケーションを可能にする。
計算資源を管理する既存のソリューションは、しばしば正確さやエネルギー効率に焦点を絞っている。
エッジデバイス上でのCPU利用とリソース管理を最適化する自己適応型アプローチを提案する。
論文 参考訳(メタデータ) (2025-02-10T14:11:29Z) - Split Learning in Computer Vision for Semantic Segmentation Delay Minimization [25.0679083637967]
分割学習(SL)を用いたセマンティックセグメンテーションにおける推論遅延を最小化する新しい手法を提案する。
SLはリソース制約のあるデバイスのためのリアルタイムコンピュータビジョン(CV)アプリケーションのニーズに合わせて調整されている。
論文 参考訳(メタデータ) (2024-12-18T19:07:25Z) - Task-Oriented Real-time Visual Inference for IoVT Systems: A Co-design Framework of Neural Networks and Edge Deployment [61.20689382879937]
タスク指向エッジコンピューティングは、データ分析をエッジにシフトすることで、この問題に対処する。
既存の手法は、高いモデル性能と低いリソース消費のバランスをとるのに苦労している。
ニューラルネットワークアーキテクチャを最適化する新しい協調設計フレームワークを提案する。
論文 参考訳(メタデータ) (2024-10-29T19:02:54Z) - Differentiable Discrete Event Simulation for Queuing Network Control [7.965453961211742]
キューのネットワーク制御は、高い性、大きな状態とアクション空間、安定性の欠如など、異なる課題を生んでいる。
本稿では,異なる離散イベントシミュレーションに基づくポリシー最適化のためのスケーラブルなフレームワークを提案する。
本手法は,非定常環境で動作するシステムなど,現実的なシナリオを柔軟に処理することができる。
論文 参考訳(メタデータ) (2024-09-05T17:53:54Z) - Learning for Semantic Knowledge Base-Guided Online Feature Transmission
in Dynamic Channels [41.59960455142914]
本稿では,エンドツーエンド通信システムにおける動的チャネル条件とデバイスモビリティの課題に対処する,オンライン最適化フレームワークを提案する。
提案手法は,多レベル特徴伝達を駆動するための意味的知識ベースを活用することによって,既存の手法に基づいている。
オンライン最適化の課題を解決するために,リアルタイム意思決定のための報酬関数を慎重に設計した,ソフトアクターに基づく深層強化学習システムの設計を行った。
論文 参考訳(メタデータ) (2023-11-30T07:35:56Z) - MARLIN: Soft Actor-Critic based Reinforcement Learning for Congestion
Control in Real Networks [63.24965775030673]
そこで本研究では,汎用的な渋滞制御(CC)アルゴリズムを設計するための新しい強化学習(RL)手法を提案する。
我々の解であるMARLINは、Soft Actor-Criticアルゴリズムを用いてエントロピーとリターンの両方を最大化する。
我々は,MARLINを実ネットワーク上で訓練し,実ミスマッチを克服した。
論文 参考訳(メタデータ) (2023-02-02T18:27:20Z) - Fluid Batching: Exit-Aware Preemptive Serving of Early-Exit Neural
Networks on Edge NPUs [74.83613252825754]
スマートエコシステム(smart ecosystems)"は、スタンドアロンではなく、センセーションが同時に行われるように形成されています。
これはデバイス上の推論パラダイムを、エッジにニューラル処理ユニット(NPU)をデプロイする方向にシフトしている。
そこで本研究では,実行時のプリエンプションが到着・終了プロセスによってもたらされる動的性を考慮に入れた,新しい早期終了スケジューリングを提案する。
論文 参考訳(メタデータ) (2022-09-27T15:04:01Z) - An Adaptive Device-Edge Co-Inference Framework Based on Soft
Actor-Critic [72.35307086274912]
高次元パラメータモデルと大規模数学的計算は、特にIoT(Internet of Things)デバイスにおける実行効率を制限する。
本稿では,ソフトポリシーの繰り返しによるエフェキシット点,エフェキシット点,エンフェキシット点を生成する離散的(SAC-d)のための新しい深層強化学習(DRL)-ソフトアクタ批判法を提案する。
レイテンシと精度を意識した報酬設計に基づいて、そのような計算は動的無線チャンネルや任意の処理のような複雑な環境によく適応でき、5G URLをサポートすることができる。
論文 参考訳(メタデータ) (2022-01-09T09:31:50Z) - Learning to Continuously Optimize Wireless Resource in a Dynamic
Environment: A Bilevel Optimization Perspective [52.497514255040514]
この研究は、データ駆動メソッドが動的環境でリソース割り当て戦略を継続的に学び、最適化することを可能にする新しいアプローチを開発しています。
学習モデルが新たなエピソードに段階的に適応できるように、連続学習の概念を無線システム設計に組み込むことを提案する。
我々の設計は、異なるデータサンプルにまたがる公平性を保証する、新しい二段階最適化定式化に基づいている。
論文 参考訳(メタデータ) (2021-05-03T07:23:39Z) - Learning to Continuously Optimize Wireless Resource In Episodically
Dynamic Environment [55.91291559442884]
この研究は、データ駆動型手法が動的環境で継続的に学習し、最適化できる方法論を開発する。
本稿では,無線システム学習のモデリングプロセスに連続学習の概念を構築することを提案する。
我々の設計は、異なるデータサンプル間で「一定の公正性を保証する」新しいmin-maxの定式化に基づいている。
論文 参考訳(メタデータ) (2020-11-16T08:24:34Z) - Reinforcement Learning on Computational Resource Allocation of
Cloud-based Wireless Networks [22.06811314358283]
IoT(Internet of Things)に使用される無線ネットワークには、主にクラウドベースのコンピューティングと処理が関与することが期待されている。
クラウド環境では、プロセスのパフォーマンスを維持しながらエネルギーを節約するために、動的計算資源割り当てが不可欠である。
本稿では、この動的計算資源割当問題をマルコフ決定プロセス(MDP)にモデル化し、CPU使用量の動的リソース割当を最適化するためのモデルベース強化学習エージェントを設計する。
その結果, エージェントは最適方針に迅速に収束し, 異なる設定で安定して動作し, 性能が良く, あるいは少なくとも等しく動作し, 異なるシナリオでの省エネにおけるベースラインアルゴリズムと比較した。
論文 参考訳(メタデータ) (2020-10-10T15:16:26Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。