論文の概要: EdgeMLBalancer: A Self-Adaptive Approach for Dynamic Model Switching on Resource-Constrained Edge Devices
- arxiv url: http://arxiv.org/abs/2502.06493v1
- Date: Mon, 10 Feb 2025 14:11:29 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-11 14:34:16.592332
- Title: EdgeMLBalancer: A Self-Adaptive Approach for Dynamic Model Switching on Resource-Constrained Edge Devices
- Title(参考訳): EdgeMLBalancer:リソース制約エッジデバイス上での動的モデルスイッチングのための自己適応的アプローチ
- Authors: Akhila Matathammal, Kriti Gupta, Larissa Lavanya, Ananya Vishal Halgatti, Priyanshi Gupta, Karthik Vaidhyanathan,
- Abstract要約: エッジデバイス上の機械学習は、リソース制約のある環境でリアルタイムAIアプリケーションを可能にする。
計算資源を管理する既存のソリューションは、しばしば正確さやエネルギー効率に焦点を絞っている。
エッジデバイス上でのCPU利用とリソース管理を最適化する自己適応型アプローチを提案する。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: The widespread adoption of machine learning on edge devices, such as mobile phones, laptops, IoT devices, etc., has enabled real-time AI applications in resource-constrained environments. Existing solutions for managing computational resources often focus narrowly on accuracy or energy efficiency, failing to adapt dynamically to varying workloads. Furthermore, the existing system lack robust mechanisms to adaptively balance CPU utilization, leading to inefficiencies in resource-constrained scenarios like real-time traffic monitoring. To address these limitations, we propose a self-adaptive approach that optimizes CPU utilization and resource management on edge devices. Our approach, EdgeMLBalancer balances between models through dynamic switching, guided by real-time CPU usage monitoring across processor cores. Tested on real-time traffic data, the approach adapts object detection models based on CPU usage, ensuring efficient resource utilization. The approach leverages epsilon-greedy strategy which promotes fairness and prevents resource starvation, maintaining system robustness. The results of our evaluation demonstrate significant improvements by balancing computational efficiency and accuracy, highlighting the approach's ability to adapt seamlessly to varying workloads. This work lays the groundwork for further advancements in self-adaptation for resource-constrained environments.
- Abstract(参考訳): 携帯電話、ラップトップ、IoTデバイスなどのエッジデバイスに機械学習が広く採用されていることにより、リソース制約のある環境でリアルタイムAIアプリケーションが実現された。
計算資源を管理する既存のソリューションは、しばしば正確さやエネルギー効率に細心の注意を払っており、様々なワークロードに動的に適応できない。
さらに、既存のシステムはCPU利用を適応的にバランスさせる堅牢なメカニズムが欠如しており、リアルタイムトラフィック監視のようなリソース制約のシナリオでは非効率になる。
これらの制約に対処するため,エッジデバイス上でのCPU利用とリソース管理を最適化する自己適応型アプローチを提案する。
われわれのアプローチでは、EdgeMLBalancerは動的スイッチングを通じてモデル間のバランスを保ち、プロセッサコア間のリアルタイムCPU使用率監視によってガイドされる。
リアルタイムトラフィックデータに基づいてテストされたこのアプローチは、CPU使用量に基づくオブジェクト検出モデルに適応し、効率的なリソース利用を保証する。
このアプローチは、公平性を促進し、リソースの飢餓を防ぎ、システムの堅牢性を維持する、エプシロングレーディ戦略を活用する。
評価の結果、計算効率と精度のバランスをとることにより、さまざまなワークロードにシームレスに適応するアプローチの能力を強調した。
この研究は、資源制約された環境に対する自己適応のさらなる進歩の基盤となる。
関連論文リスト
- Neural Horizon Model Predictive Control -- Increasing Computational Efficiency with Neural Networks [0.0]
予測制御をモデル化するための機械学習支援手法を提案する。
安全保証を維持しつつ,問題地平線の一部を近似することを提案する。
提案手法は,迅速な制御応答を必要とするアプリケーションを含む,幅広いアプリケーションに適用可能である。
論文 参考訳(メタデータ) (2024-08-19T08:13:37Z) - DNN Partitioning, Task Offloading, and Resource Allocation in Dynamic Vehicular Networks: A Lyapunov-Guided Diffusion-Based Reinforcement Learning Approach [49.56404236394601]
本稿では,Vehicular Edge Computingにおける共同DNNパーティショニング,タスクオフロード,リソース割り当ての問題を定式化する。
我々の目標は、時間とともにシステムの安定性を保証しながら、DNNベースのタスク完了時間を最小化することである。
拡散モデルの革新的利用を取り入れたマルチエージェント拡散に基づく深層強化学習(MAD2RL)アルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-06-11T06:31:03Z) - Machine Learning Insides OptVerse AI Solver: Design Principles and
Applications [74.67495900436728]
本稿では,Huawei CloudのOpsVerse AIソルバに機械学習(ML)技術を統合するための総合的研究について述べる。
本稿では,実世界の多面構造を反映した生成モデルを用いて,複雑なSATインスタンスとMILPインスタンスを生成する手法を紹介する。
本稿では,解解器性能を著しく向上させる,最先端パラメータチューニングアルゴリズムの導入について詳述する。
論文 参考訳(メタデータ) (2024-01-11T15:02:15Z) - Offloading and Quality Control for AI Generated Content Services in 6G Mobile Edge Computing Networks [18.723955271182007]
本稿では, 逆拡散段階における拡散モデルのオフロード決定, 計算時間, 拡散ステップに対する共同最適化アルゴリズムを提案する。
実験結果から,提案アルゴリズムはベースラインよりも優れた継手最適化性能が得られることが示された。
論文 参考訳(メタデータ) (2023-12-11T08:36:27Z) - Orchestration of Emulator Assisted Mobile Edge Tuning for AI Foundation
Models: A Multi-Agent Deep Reinforcement Learning Approach [10.47302625959368]
我々は,モバイルエッジコンピューティングと基礎モデルを統合した画期的なパラダイムを提示する。
私たちのアプローチの中心はイノベーティブなEmulator-Adapterアーキテクチャであり、基礎モデルを2つの凝集モジュールに分割する。
本稿では,分散環境におけるEmulator-Adapter構造のニーズに合わせて微調整された高度なリソース割り当て機構を提案する。
論文 参考訳(メタデータ) (2023-10-26T15:47:51Z) - Adaptive Resource Allocation for Virtualized Base Stations in O-RAN with Online Learning [55.08287089554127]
基地局(vBS)を備えたオープンラジオアクセスネットワークシステムは、柔軟性の向上、コスト削減、ベンダーの多様性、相互運用性のメリットを提供する。
本研究では,予期せぬ「混み合う」環境下であっても,効率的なスループットとvBSエネルギー消費のバランスをとるオンライン学習アルゴリズムを提案する。
提案手法は, 課題のある環境においても, 平均最適性ギャップをゼロにすることで, サブ線形後悔を実現する。
論文 参考訳(メタデータ) (2023-09-04T17:30:21Z) - Energy-efficient Task Adaptation for NLP Edge Inference Leveraging
Heterogeneous Memory Architectures [68.91874045918112]
Adapter-ALBERTは、様々なタスクにわたる最大データ再利用のための効率的なモデル最適化である。
検証されたNLPエッジアクセラレータ上でシミュレーションを行うことにより、モデルを不均一なオンチップメモリアーキテクチャにマッピングする利点を実証する。
論文 参考訳(メタデータ) (2023-03-25T14:40:59Z) - A Meta Reinforcement Learning Approach for Predictive Autoscaling in the
Cloud [10.970391043991363]
本稿では,CPU利用の安定レベルを維持するために資源を最適に割り当てることを目的とした,エンドツーエンドのメタモデルに基づくRLアルゴリズムを提案する。
当社のアルゴリズムは,スケーリング戦略の予測可能性と精度を確保するだけでなく,スケーリング決定が変化するワークロードに高いサンプル効率で適応できるようにする。
論文 参考訳(メタデータ) (2022-05-31T13:54:04Z) - Towards AIOps in Edge Computing Environments [60.27785717687999]
本稿では,異種分散環境に適用可能なaiopsプラットフォームのシステム設計について述べる。
高頻度でメトリクスを収集し、エッジデバイス上で特定の異常検出アルゴリズムを直接実行することが可能である。
論文 参考訳(メタデータ) (2021-02-12T09:33:00Z) - Reconfigurable Intelligent Surface Assisted Mobile Edge Computing with
Heterogeneous Learning Tasks [53.1636151439562]
モバイルエッジコンピューティング(MEC)は、AIアプリケーションに自然なプラットフォームを提供します。
再構成可能なインテリジェントサーフェス(RIS)の助けを借りて、MECで機械学習タスクを実行するインフラストラクチャを提示します。
具体的には,モバイルユーザの送信パワー,基地局のビームフォーミングベクトル,risの位相シフト行列を共同で最適化することにより,参加ユーザの学習誤差を最小化する。
論文 参考訳(メタデータ) (2020-12-25T07:08:50Z) - AutoScale: Optimizing Energy Efficiency of End-to-End Edge Inference
under Stochastic Variance [11.093360539563657]
AutoScaleは、カスタム設計の強化学習アルゴリズムに基づいて構築された、適応的で軽量な実行スケーリングエンジンである。
本稿では,エッジでの高精度かつエネルギー効率の高いディープラーニング推論を実現するためのAutoScaleを提案する。
論文 参考訳(メタデータ) (2020-05-06T00:30:29Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。