Deep Understanding of Sign Language for Sign to Subtitle Alignment
- URL: http://arxiv.org/abs/2503.03287v1
- Date: Wed, 05 Mar 2025 09:13:40 GMT
- Title: Deep Understanding of Sign Language for Sign to Subtitle Alignment
- Authors: Youngjoon Jang, Jeongsoo Choi, Junseok Ahn, Joon Son Chung,
- Abstract summary: We leverage grammatical rules of British Sign Language to pre-process the input subtitles.<n>We design a selective alignment loss to optimise the model for predicting the temporal location of signs.<n>We conduct self-training with refined pseudo-labels which are more accurate than the audio-aligned labels.
- Score: 13.96216152723074
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The objective of this work is to align asynchronous subtitles in sign language videos with limited labelled data. To achieve this goal, we propose a novel framework with the following contributions: (1) we leverage fundamental grammatical rules of British Sign Language (BSL) to pre-process the input subtitles, (2) we design a selective alignment loss to optimise the model for predicting the temporal location of signs only when the queried sign actually occurs in a scene, and (3) we conduct self-training with refined pseudo-labels which are more accurate than the heuristic audio-aligned labels. From this, our model not only better understands the correlation between the text and the signs, but also holds potential for application in the translation of sign languages, particularly in scenarios where manual labelling of large-scale sign data is impractical or challenging. Extensive experimental results demonstrate that our approach achieves state-of-the-art results, surpassing previous baselines by substantial margins in terms of both frame-level accuracy and F1-score. This highlights the effectiveness and practicality of our framework in advancing the field of sign language video alignment and translation.
Related papers
- Lost in Translation, Found in Context: Sign Language Translation with Contextual Cues [56.038123093599815]
Our objective is to translate continuous sign language into spoken language text.<n>We incorporate additional contextual cues together with the signing video.<n>We show that our contextual approach significantly enhances the quality of the translations.
arXiv Detail & Related papers (2025-01-16T18:59:03Z) - MS2SL: Multimodal Spoken Data-Driven Continuous Sign Language Production [93.32354378820648]
We propose a unified framework for continuous sign language production, easing communication between sign and non-sign language users.
A sequence diffusion model, utilizing embeddings extracted from text or speech, is crafted to generate sign predictions step by step.
Experiments on How2Sign and PHOENIX14T datasets demonstrate that our model achieves competitive performance in sign language production.
arXiv Detail & Related papers (2024-07-04T13:53:50Z) - SignMusketeers: An Efficient Multi-Stream Approach for Sign Language Translation at Scale [22.49602248323602]
A persistent challenge in sign language video processing is how we learn representations of sign language.
Our proposed method focuses on just the most relevant parts in a signing video: the face, hands and body posture of the signer.
Our approach is based on learning from individual frames (rather than video sequences) and is therefore much more efficient than prior work on sign language pre-training.
arXiv Detail & Related papers (2024-06-11T03:00:41Z) - Gloss Alignment Using Word Embeddings [40.100782464872076]
We propose a method for aligning spottings with their corresponding subtitles using large spoken language models.
We quantitatively demonstrate the effectiveness of our method on the acfmdgs and acfbobsl datasets.
arXiv Detail & Related papers (2023-08-08T13:26:53Z) - SignBERT+: Hand-model-aware Self-supervised Pre-training for Sign
Language Understanding [132.78015553111234]
Hand gesture serves as a crucial role during the expression of sign language.
Current deep learning based methods for sign language understanding (SLU) are prone to over-fitting due to insufficient sign data resource.
We propose the first self-supervised pre-trainable SignBERT+ framework with model-aware hand prior incorporated.
arXiv Detail & Related papers (2023-05-08T17:16:38Z) - On the Importance of Signer Overlap for Sign Language Detection [65.26091369630547]
We argue that the current benchmark data sets for sign language detection estimate overly positive results that do not generalize well.
We quantify this with a detailed analysis of the effect of signer overlap on current sign detection benchmark data sets.
We propose new data set partitions that are free of overlap and allow for more realistic performance assessment.
arXiv Detail & Related papers (2023-03-19T22:15:05Z) - Automatic dense annotation of large-vocabulary sign language videos [85.61513254261523]
We propose a simple, scalable framework to vastly increase the density of automatic annotations.
We make these annotations publicly available to support the sign language research community.
arXiv Detail & Related papers (2022-08-04T17:55:09Z) - BSL-1K: Scaling up co-articulated sign language recognition using
mouthing cues [106.21067543021887]
We show how to use mouthing cues from signers to obtain high-quality annotations from video data.
The BSL-1K dataset is a collection of British Sign Language (BSL) signs of unprecedented scale.
arXiv Detail & Related papers (2020-07-23T16:59:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.