論文の概要: Interactive Segmentation and Report Generation for CT Images
- arxiv url: http://arxiv.org/abs/2503.03294v1
- Date: Wed, 05 Mar 2025 09:18:27 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-06 15:51:18.897482
- Title: Interactive Segmentation and Report Generation for CT Images
- Title(参考訳): CT画像の対話的セグメンテーションとレポート生成
- Authors: Yannian Gu, Wenhui Lei, Hanyu Chen, Xiaofan Zhang, Shaoting Zhang,
- Abstract要約: 本稿では,3次元病変の報告のためのインタラクティブなフレームワークを提案する。
3次元CT医療画像にインタラクティブなセグメンテーションと構造化されたレポートを統合するのは,今回が初めてである。
- 参考スコア(独自算出の注目度): 10.23242820828816
- License:
- Abstract: Automated CT report generation plays a crucial role in improving diagnostic accuracy and clinical workflow efficiency. However, existing methods lack interpretability and impede patient-clinician understanding, while their static nature restricts radiologists from dynamically adjusting assessments during image review. Inspired by interactive segmentation techniques, we propose a novel interactive framework for 3D lesion morphology reporting that seamlessly generates segmentation masks with comprehensive attribute descriptions, enabling clinicians to generate detailed lesion profiles for enhanced diagnostic assessment. To our best knowledge, we are the first to integrate the interactive segmentation and structured reports in 3D CT medical images. Experimental results across 15 lesion types demonstrate the effectiveness of our approach in providing a more comprehensive and reliable reporting system for lesion segmentation and capturing. The source code will be made publicly available following paper acceptance.
- Abstract(参考訳): 自動CTレポート生成は、診断精度と臨床ワークフロー効率を向上させる上で重要な役割を担っている。
しかし,既存の手法は解釈可能性に欠け,患者・クリニックの理解を阻害するが,静的な性質は放射線学者が画像レビュー中に動的に評価を調整することを妨げている。
インタラクティブなセグメンテーション技術に触発されて,包括的属性記述を伴うセグメンテーションマスクをシームレスに生成し,臨床医が詳細な病変プロファイルを作成できるようにし,診断の強化を図る。
我々の知る限り、3次元CT医療画像にインタラクティブなセグメンテーションと構造化されたレポートを統合するのはこれが初めてである。
15種類の病変に対して, より包括的かつ信頼性の高い病変分割・捕獲報告システムを提供することで, アプローチの有効性を実証した。
ソースコードは、論文の受理後、公開される予定である。
関連論文リスト
- MvKeTR: Chest CT Report Generation with Multi-View Perception and Knowledge Enhancement [1.4680538148112467]
マルチビュー認識知識強化トランス(MvKeTR)
複数の解剖学的視点から診断情報を効果的に合成する。
Cross-Modal Knowledge Enhancer (CMKE) はクエリボリュームに基づいて最もよく似たレポートを検索する。
論文 参考訳(メタデータ) (2024-11-27T12:58:23Z) - A Multimodal Approach Combining Structural and Cross-domain Textual Guidance for Weakly Supervised OCT Segmentation [12.948027961485536]
Weakly Supervised Semantic (WSSS) アプローチを提案する。
本手法は診断精度の向上と医用画像の効率向上に資する技術である。
論文 参考訳(メタデータ) (2024-11-19T16:20:27Z) - Radiology Report Generation Using Transformers Conditioned with
Non-imaging Data [55.17268696112258]
本稿では,胸部X線画像と関連する患者の人口統計情報を統合したマルチモーダルトランスフォーマーネットワークを提案する。
提案ネットワークは、畳み込みニューラルネットワークを用いて、CXRから視覚的特徴を抽出し、その視覚的特徴と患者の人口統計情報のセマンティックテキスト埋め込みを組み合わせたトランスフォーマーベースのエンコーダデコーダネットワークである。
論文 参考訳(メタデータ) (2023-11-18T14:52:26Z) - A Transformer-based representation-learning model with unified
processing of multimodal input for clinical diagnostics [63.106382317917344]
本稿では,マルチモーダル入力を統一的に処理する臨床診断支援として,トランスフォーマーを用いた表現学習モデルについて報告する。
統一モデルは, 肺疾患の同定において, 画像のみのモデル, 非統一型マルチモーダル診断モデルより優れていた。
論文 参考訳(メタデータ) (2023-06-01T16:23:47Z) - Reliable Joint Segmentation of Retinal Edema Lesions in OCT Images [55.83984261827332]
本稿では,信頼性の高いマルチスケールウェーブレットエンハンストランスネットワークを提案する。
本研究では,ウェーブレット型特徴抽出器ネットワークとマルチスケール変圧器モジュールを統合したセグメンテーションバックボーンを開発した。
提案手法は,他の最先端セグメンテーション手法と比較して信頼性の高いセグメンテーション精度を実現する。
論文 参考訳(メタデータ) (2022-12-01T07:32:56Z) - SeATrans: Learning Segmentation-Assisted diagnosis model via Transforme [13.63128987400635]
本稿では,視覚支援型診断変換器(SeATrans)を提案する。
まず、各低レベル診断特徴とマルチスケールセグメンテーション特徴とを相関させる非対称なマルチスケールインタラクション戦略を提案する。
セグメンテーション-診断相互作用をモデル化するために、SeAブロックはまず、エンコーダを介してセグメンテーション情報に基づいて診断特徴を埋め込み、デコーダによりその埋め込みを診断特徴空間に戻す。
論文 参考訳(メタデータ) (2022-06-12T15:10:33Z) - Cross-modal Clinical Graph Transformer for Ophthalmic Report Generation [116.87918100031153]
眼科報告生成(ORG)のためのクロスモーダルな臨床グラフ変換器(CGT)を提案する。
CGTは、デコード手順を駆動する事前知識として、臨床関係を視覚特徴に注入する。
大規模FFA-IRベンチマークの実験は、提案したCGTが従来のベンチマーク手法より優れていることを示した。
論文 参考訳(メタデータ) (2022-06-04T13:16:30Z) - Interactive Medical Image Segmentation with Self-Adaptive Confidence
Calibration [10.297081695050457]
本稿では,自己適応信頼度校正(MECCA)を用いた対話型メダカルセグメンテーションという対話型セグメンテーションフレームワークを提案する。
新規な行動に基づく信頼ネットワークを通じて評価を確立し、MARLから補正動作を得る。
種々の医用画像データセットに対する実験結果から,提案アルゴリズムの有意な性能が示された。
論文 参考訳(メタデータ) (2021-11-15T12:38:56Z) - Systematic Clinical Evaluation of A Deep Learning Method for Medical
Image Segmentation: Radiosurgery Application [48.89674088331313]
3次元医用画像分割作業において,Deep Learning (DL) 手法を体系的に評価した。
本手法は放射線外科治療プロセスに統合され,臨床ワークフローに直接影響を及ぼす。
論文 参考訳(メタデータ) (2021-08-21T16:15:40Z) - Weakly supervised multiple instance learning histopathological tumor
segmentation [51.085268272912415]
スライド画像全体のセグメント化のための弱教師付きフレームワークを提案する。
トレーニングモデルに複数のインスタンス学習スキームを利用する。
提案するフレームワークは,The Cancer Genome AtlasとPatchCamelyonデータセットのマルチロケーションとマルチ中心公開データに基づいて評価されている。
論文 参考訳(メタデータ) (2020-04-10T13:12:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。