iNews: A Multimodal Dataset for Modeling Personalized Affective Responses to News
- URL: http://arxiv.org/abs/2503.03335v2
- Date: Fri, 04 Jul 2025 16:13:41 GMT
- Title: iNews: A Multimodal Dataset for Modeling Personalized Affective Responses to News
- Authors: Tiancheng Hu, Nigel Collier,
- Abstract summary: iNews is a novel dataset specifically designed to facilitate the modeling of personalized affective responses to news content.<n>Our dataset comprises annotations from 291 demographically diverse UK participants across 2,899 multimodal Facebook news posts from major UK outlets.
- Score: 25.367927300697424
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Understanding how individuals perceive and react to information is fundamental for advancing social and behavioral sciences and developing human-centered AI systems. Current approaches often lack the granular data needed to model these personalized responses, relying instead on aggregated labels that obscure the rich variability driven by individual differences. We introduce iNews, a novel large-scale dataset specifically designed to facilitate the modeling of personalized affective responses to news content. Our dataset comprises annotations from 291 demographically diverse UK participants across 2,899 multimodal Facebook news posts from major UK outlets, with an average of 5.18 annotators per sample. For each post, annotators provide multifaceted labels including valence, arousal, dominance, discrete emotions, content relevance judgments, sharing likelihood, and modality importance ratings. Crucially, we collect comprehensive annotator persona information covering demographics, personality, media trust, and consumption patterns, which explain 15.2% of annotation variance - substantially higher than existing NLP datasets. Incorporating this information yields a 7% accuracy gain in zero-shot prediction and remains beneficial even with 32-shot in-context learning. iNews opens new possibilities for research in LLM personalization, subjectivity, affective computing, and human behavior simulation.
Related papers
- Profiling News Media for Factuality and Bias Using LLMs and the Fact-Checking Methodology of Human Experts [29.95198868148809]
We propose a novel methodology that emulates the criteria that professional fact-checkers use to assess the factuality and political bias of an entire outlet.<n>We provide an in-depth error analysis of the effect of media popularity and region on model performance.
arXiv Detail & Related papers (2025-06-14T15:49:20Z) - Cream of the Crop: Harvesting Rich, Scalable and Transferable Multi-Modal Data for Instruction Fine-Tuning [59.56171041796373]
We harvest multi-modal instructional data in a robust and efficient manner.<n>We take interaction style as diversity indicator and use a multi-modal rich styler to identify data instruction patterns.<n>Across 10+ experimental settings, validated by 14 multi-modal benchmarks, we demonstrate consistent improvements over random sampling, baseline strategies and state-of-the-art selection methods.
arXiv Detail & Related papers (2025-03-17T17:11:22Z) - Identifying Privacy Personas [27.301741710016223]
Privacy personas capture the differences in user segments with respect to one's knowledge, behavioural patterns, level of self-efficacy, and perception of the importance of privacy protection.
While various privacy personas have been derived in the literature, they group together people who differ from each other in terms of important attributes.
We propose eight personas that we derive by combining qualitative and quantitative analysis of the responses to an interactive educational questionnaire.
arXiv Detail & Related papers (2024-10-17T20:49:46Z) - Can Language Models Reason about Individualistic Human Values and Preferences? [44.249817353449146]
We study language models (LMs) on the challenge of individualistic value reasoning.<n>We find critical limitations in frontier LMs, which achieve only 55 % to 65% accuracy in predicting individualistic values.<n>We also identify a partiality of LMs in reasoning about global individualistic values, as measured by our proposed Value Inequity Index (sigmaInequity)
arXiv Detail & Related papers (2024-10-04T19:03:41Z) - The MuSe 2024 Multimodal Sentiment Analysis Challenge: Social Perception and Humor Recognition [64.5207572897806]
The Multimodal Sentiment Analysis Challenge (MuSe) 2024 addresses two contemporary multimodal affect and sentiment analysis problems.
In the Social Perception Sub-Challenge (MuSe-Perception), participants will predict 16 different social attributes of individuals.
The Cross-Cultural Humor Detection Sub-Challenge (MuSe-Humor) dataset expands upon the Passau Spontaneous Football Coach Humor dataset.
arXiv Detail & Related papers (2024-06-11T22:26:20Z) - Mitigating Biases in Collective Decision-Making: Enhancing Performance in the Face of Fake News [4.413331329339185]
We study the influence these biases can have in the pervasive problem of fake news by evaluating human participants' capacity to identify false headlines.
By focusing on headlines involving sensitive characteristics, we gather a comprehensive dataset to explore how human responses are shaped by their biases.
We show that demographic factors, headline categories, and the manner in which information is presented significantly influence errors in human judgment.
arXiv Detail & Related papers (2024-03-11T12:08:08Z) - On the steerability of large language models toward data-driven personas [98.9138902560793]
Large language models (LLMs) are known to generate biased responses where the opinions of certain groups and populations are underrepresented.
Here, we present a novel approach to achieve controllable generation of specific viewpoints using LLMs.
arXiv Detail & Related papers (2023-11-08T19:01:13Z) - Personality Profiling: How informative are social media profiles in predicting personal information? [0.04096453902709291]
We explore the extent to which peoples' online digital footprints can be used to profile their Myers-Briggs personality type.
We compare four models: logistic regression, naive Bayes, support vector machines (SVMs) and random forests.
A SVM model achieves the best accuracy of 20.95% for predicting a complete personality type.
arXiv Detail & Related papers (2023-09-15T03:09:43Z) - Measuring the Effect of Influential Messages on Varying Personas [67.1149173905004]
We present a new task, Response Forecasting on Personas for News Media, to estimate the response a persona might have upon seeing a news message.
The proposed task not only introduces personalization in the modeling but also predicts the sentiment polarity and intensity of each response.
This enables more accurate and comprehensive inference on the mental state of the persona.
arXiv Detail & Related papers (2023-05-25T21:01:00Z) - When the Majority is Wrong: Modeling Annotator Disagreement for Subjective Tasks [45.14664901245331]
A crucial problem in hate speech detection is determining whether a statement is offensive to a demographic group.
We construct a model that predicts individual annotator ratings on potentially offensive text.
We find that annotator ratings can be predicted using their demographic information and opinions on online content.
arXiv Detail & Related papers (2023-05-11T07:55:20Z) - The MuSe 2023 Multimodal Sentiment Analysis Challenge: Mimicked
Emotions, Cross-Cultural Humour, and Personalisation [69.13075715686622]
MuSe 2023 is a set of shared tasks addressing three different contemporary multimodal affect and sentiment analysis problems.
MuSe 2023 seeks to bring together a broad audience from different research communities.
arXiv Detail & Related papers (2023-05-05T08:53:57Z) - ASPEST: Bridging the Gap Between Active Learning and Selective
Prediction [56.001808843574395]
Selective prediction aims to learn a reliable model that abstains from making predictions when uncertain.
Active learning aims to lower the overall labeling effort, and hence human dependence, by querying the most informative examples.
In this work, we introduce a new learning paradigm, active selective prediction, which aims to query more informative samples from the shifted target domain.
arXiv Detail & Related papers (2023-04-07T23:51:07Z) - Assessing Demographic Bias Transfer from Dataset to Model: A Case Study
in Facial Expression Recognition [1.5340540198612824]
Two metrics focus on the representational and stereotypical bias of the dataset, and the third one on the residual bias of the trained model.
We demonstrate the usefulness of the metrics by applying them to a FER problem based on the popular Affectnet dataset.
arXiv Detail & Related papers (2022-05-20T09:40:42Z) - Perceptual Score: What Data Modalities Does Your Model Perceive? [73.75255606437808]
We introduce the perceptual score, a metric that assesses the degree to which a model relies on the different subsets of the input features.
We find that recent, more accurate multi-modal models for visual question-answering tend to perceive the visual data less than their predecessors.
Using the perceptual score also helps to analyze model biases by decomposing the score into data subset contributions.
arXiv Detail & Related papers (2021-10-27T12:19:56Z) - A Multi-input Multi-output Transformer-based Hybrid Neural Network for
Multi-class Privacy Disclosure Detection [3.04585143845864]
In this paper, we propose a multi-input, multi-output hybrid neural network which utilizes transfer-learning, linguistics, and metadata to learn the hidden patterns.
We trained and evaluated our model on a human-annotated ground truth dataset, containing a total of 5,400 tweets.
arXiv Detail & Related papers (2021-08-19T03:58:49Z) - Two-Faced Humans on Twitter and Facebook: Harvesting Social Multimedia
for Human Personality Profiling [74.83957286553924]
We infer the Myers-Briggs Personality Type indicators by applying a novel multi-view fusion framework, called "PERS"
Our experimental results demonstrate the PERS's ability to learn from multi-view data for personality profiling by efficiently leveraging on the significantly different data arriving from diverse social multimedia sources.
arXiv Detail & Related papers (2021-06-20T10:48:49Z) - MBIC -- A Media Bias Annotation Dataset Including Annotator
Characteristics [0.0]
Media bias, or slanted news coverage, can have a substantial impact on public perception of events.
In this poster, we present a matrix-based methodology to crowdsource such data using a self-developed annotation platform.
We also present MBIC - the first sample of 1,700 statements representing various media bias instances.
arXiv Detail & Related papers (2021-05-20T15:05:17Z) - Vyaktitv: A Multimodal Peer-to-Peer Hindi Conversations based Dataset
for Personality Assessment [50.15466026089435]
We present a novel peer-to-peer Hindi conversation dataset- Vyaktitv.
It consists of high-quality audio and video recordings of the participants, with Hinglish textual transcriptions for each conversation.
The dataset also contains a rich set of socio-demographic features, like income, cultural orientation, amongst several others, for all the participants.
arXiv Detail & Related papers (2020-08-31T17:44:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.