論文の概要: EnigmaToM: Improve LLMs' Theory-of-Mind Reasoning Capabilities with Neural Knowledge Base of Entity States
- arxiv url: http://arxiv.org/abs/2503.03340v2
- Date: Mon, 02 Jun 2025 14:15:13 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-06-03 16:22:43.167458
- Title: EnigmaToM: Improve LLMs' Theory-of-Mind Reasoning Capabilities with Neural Knowledge Base of Entity States
- Title(参考訳): EnigmaToM: エンティティ状態のニューラルネットワークベースによるLLMの最小推論能力の向上
- Authors: Hainiu Xu, Siya Qi, Jiazheng Li, Yuxiang Zhou, Jinhua Du, Caroline Catmur, Yulan He,
- Abstract要約: 理論-オブ-ミンド(ToM)は人間の相互作用の基本であるが、Large Language Models (LLMs) の課題は残る。
Enigma(エニグマ)の神経知識ベースを統合することでToM推論を強化する新しいニューロシンボリックフレームワークであるEnigmaToMを提案する。
ToMi, HiToM, FANToM ベンチマークによる実験結果から, EnigmaToM は様々な大きさの LLM における ToM 推論を大幅に改善することが示された。
- 参考スコア(独自算出の注目度): 15.557449564031975
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Theory-of-Mind (ToM), the ability to infer others' perceptions and mental states, is fundamental to human interaction but remains challenging for Large Language Models (LLMs). While existing ToM reasoning methods show promise with reasoning via perceptual perspective-taking, they often rely excessively on off-the-shelf LLMs, reducing their efficiency and limiting their applicability to high-order ToM reasoning. To address these issues, we present EnigmaToM, a novel neuro-symbolic framework that enhances ToM reasoning by integrating a Neural Knowledge Base of entity states (Enigma) for (1) a psychology-inspired iterative masking mechanism that facilitates accurate perspective-taking and (2) knowledge injection that elicits key entity information. Enigma generates structured knowledge of entity states to build spatial scene graphs for belief tracking across various ToM orders and enrich events with fine-grained entity state details. Experimental results on ToMi, HiToM, and FANToM benchmarks show that EnigmaToM significantly improves ToM reasoning across LLMs of varying sizes, particularly excelling in high-order reasoning scenarios.
- Abstract(参考訳): 他者の知覚や精神状態を予測する能力である理論・オブ・ミンド(ToM)は、人間の相互作用の基本であるが、Large Language Models(LLM)では依然として困難である。
既存のToM推論手法は知覚的な視点による推論を約束するが、それらはしばしば既製のLLMに過度に依存し、効率を低下させ、ToM推論の適用性を高次のToM推論に制限する。
これらの課題に対処するために,(1) 心理に着想を得た反復マスキング機構と(2) 重要な実体情報を引き出す知識注入を組み込むことにより,ToM推論を強化する新しい神経象徴的フレームワークであるEnigmaToMを提案する。
エニグマは実体状態の構造的知識を生成し、様々なToMオーダーをまたいだ信念追跡のための空間的シーングラフを構築し、きめ細かい実体状態の詳細を持つイベントを豊かにする。
ToMi, HiToM, FANToM ベンチマークによる実験結果から, EnigmaToM は様々なサイズの LLM における ToM 推論を大幅に改善し,特に高次推論のシナリオにおいて優れていた。
関連論文リスト
- Decompose-ToM: Enhancing Theory of Mind Reasoning in Large Language Models through Simulation and Task Decomposition [2.089191490381739]
心の理論 (Theory of Mind, ToM) は、他者の精神状態を理解し、反映する能力である。
大規模言語モデル(LLM)は、ToMの初歩的な理解しか持たない。
本稿では,複雑なToMタスクにおけるモデル性能を改善するLLMベースの推論アルゴリズムであるDecompose-ToM'を提案する。
論文 参考訳(メタデータ) (2025-01-15T18:44:01Z) - Imagine while Reasoning in Space: Multimodal Visualization-of-Thought [70.74453180101365]
大型言語モデル(LLM)とマルチモーダル大規模言語モデル(MLLM)の複雑な推論を強化するために、CoTプロンプト(Chain-of-Thought)が有効であることが証明された。
我々は新しい推論パラダイムであるMultimodal Visualization-of-Thought (MVoT)を提案する。
MLLMにおいて、推論トレースの画像視覚化を生成することにより、視覚的思考を可能にする。
論文 参考訳(メタデータ) (2025-01-13T18:23:57Z) - Cantor: Inspiring Multimodal Chain-of-Thought of MLLM [83.6663322930814]
視覚的コンテキスト獲得と論理的推論の集約は、視覚的推論タスクに取り組む上で重要であると我々は主張する。
我々はCantorと呼ばれる革新的なマルチモーダルCoTフレームワークを提案し、その特徴は知覚決定アーキテクチャである。
提案手法の有効性を実証し,マルチモーダルCoT性能の大幅な向上を示した。
論文 参考訳(メタデータ) (2024-04-24T17:59:48Z) - ToM-LM: Delegating Theory of Mind Reasoning to External Symbolic Executors in Large Language Models [5.455744338342196]
心の理論(りょうせい、英: Theory of Mind、ToM)とは、個人が心の状態を他人に当てはめる能力のこと。
大きな言語モデル(LLM)は、ToMの能力といくつかの約束を示しているが、それでも複雑なToM推論に苦戦している。
論文 参考訳(メタデータ) (2024-04-23T20:59:03Z) - Fact :Teaching MLLMs with Faithful, Concise and Transferable Rationales [102.54274021830207]
MLLMの教えに忠実で簡潔で伝達しやすい多モーダル論理を生成するために設計された新しいパラダイムであるFactを紹介する。
プログラミングパラダイムからエンドツーエンドパラダイムに転送可能な合理性をフィルタリングして、転送可能性を保証する。
また,画像とテキストの相関性が高いため,幻覚の低減も図っている。
論文 参考訳(メタデータ) (2024-04-17T07:20:56Z) - Mind's Eye of LLMs: Visualization-of-Thought Elicits Spatial Reasoning in Large Language Models [71.93366651585275]
大規模言語モデル(LLM)は、言語理解と様々な推論タスクにおいて印象的な性能を示した。
本稿では,LLMの空間的推論を視覚的に行うために,VoT(Visual-of-Thought)を提案する。
VoTはLLMの空間的推論能力を著しく向上させる。
論文 参考訳(メタデータ) (2024-04-04T17:45:08Z) - What if...?: Thinking Counterfactual Keywords Helps to Mitigate Hallucination in Large Multi-modal Models [50.97705264224828]
大規模マルチモーダルモデルに反現実的思考を組み込む新しい手法である反現実的インセプションを提案する。
我々は、より広い文脈のシーン理解にまたがる応答をモデルが関与し、生成することを目指している。
オープンソースモデルとプロプライエタリモデルの両方を含む様々なLMMの包括的分析は、反事実的思考が幻覚を著しく減少させることを裏付ける。
論文 参考訳(メタデータ) (2024-03-20T11:27:20Z) - Think Twice: Perspective-Taking Improves Large Language Models'
Theory-of-Mind Capabilities [63.90227161974381]
SimToMは、シミュレーション理論の視点取りの概念にインスパイアされた、新しいプロンプトフレームワークである。
我々のアプローチは、追加のトレーニングや最小限のプロンプトチューニングを必要とせず、既存の手法よりも大幅に改善されている。
論文 参考訳(メタデータ) (2023-11-16T22:49:27Z) - FANToM: A Benchmark for Stress-testing Machine Theory of Mind in
Interactions [94.61530480991627]
現在、マインド評価の理論は、本質的に相互作用性に欠ける受動的物語を用いたテストモデルに焦点を当てている。
本稿では,情報非対称な会話文脈におけるToMのストレステストを目的とした新しいベンチマークであるFANToMを紹介する。
論文 参考訳(メタデータ) (2023-10-24T00:24:11Z) - Concise and Organized Perception Facilitates Reasoning in Large Language Models [32.71672086718057]
大規模言語モデル (LLM) は, 推論作業における乱雑な内容や無関係な内容を扱う際に, 人間の認知バイアスに類似した障害パターンを示す。
コンシス・アンド・オーガナイズド・パーセプション(COP)という新しい推論手法を提案する。
COPは与えられたステートメントを慎重に分析し、冗長性を効率的に排除しながら、最も関連する情報を識別する。
論文 参考訳(メタデータ) (2023-10-05T04:47:49Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。