Multi-Agent DRL for Queue-Aware Task Offloading in Hierarchical MEC-Enabled Air-Ground Networks
- URL: http://arxiv.org/abs/2503.03391v1
- Date: Wed, 05 Mar 2025 11:12:40 GMT
- Title: Multi-Agent DRL for Queue-Aware Task Offloading in Hierarchical MEC-Enabled Air-Ground Networks
- Authors: Muhammet Hevesli, Abegaz Mohammed Seid, Aiman Erbad, Mohamed Abdallah,
- Abstract summary: Mobile edge computing (MEC)-enabled air-ground networks are a key component of 6G.<n>This paper tackles the overall energy problem in MEC-enabled air-ground integrated networks (MAGIN)<n>We propose a novel variant of multi-altitude policy optimization with a Beta distribution (MAPPO-BD) to solve it.
- Score: 4.0948483603286245
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Mobile edge computing (MEC)-enabled air-ground networks are a key component of 6G, employing aerial base stations (ABSs) such as unmanned aerial vehicles (UAVs) and high-altitude platform stations (HAPS) to provide dynamic services to ground IoT devices (IoTDs). These IoTDs support real-time applications (e.g., multimedia and Metaverse services) that demand high computational resources and strict quality of service (QoS) guarantees in terms of latency and task queue management. Given their limited energy and processing capabilities, IoTDs rely on UAVs and HAPS to offload tasks for distributed processing, forming a multi-tier MEC system. This paper tackles the overall energy minimization problem in MEC-enabled air-ground integrated networks (MAGIN) by jointly optimizing UAV trajectories, computing resource allocation, and queue-aware task offloading decisions. The optimization is challenging due to the nonconvex, nonlinear nature of this hierarchical system, which renders traditional methods ineffective. We reformulate the problem as a multi-agent Markov decision process (MDP) with continuous action spaces and heterogeneous agents, and propose a novel variant of multi-agent proximal policy optimization with a Beta distribution (MAPPO-BD) to solve it. Extensive simulations show that MAPPO-BD outperforms baseline schemes, achieving superior energy savings and efficient resource management in MAGIN while meeting queue delay and edge computing constraints.
Related papers
- Energy-Efficient Flying LoRa Gateways: A Multi-Agent Reinforcement Learning Approach [1.1970409518725493]
We deploy flying LoRa gateways mounted on unmanned aerial vehicles (UAVs) to collect data from LoRa end devices (EDs) and transmit it to a central server.<n>Our primary objective is to maximize the global system energy efficiency (EE) of wireless LoRa networks by joint optimization of transmission power (TP), spreading factor (SF), bandwidth (W), and ED association.
arXiv Detail & Related papers (2025-02-05T17:16:40Z) - Secure Resource Allocation via Constrained Deep Reinforcement Learning [49.15061461220109]
We present SARMTO, a framework that balances resource allocation, task offloading, security, and performance.<n>SARMTO consistently outperforms five baseline approaches, achieving up to a 40% reduction in system costs.<n>These enhancements highlight SARMTO's potential to revolutionize resource management in intricate distributed computing environments.
arXiv Detail & Related papers (2025-01-20T15:52:43Z) - Task Delay and Energy Consumption Minimization for Low-altitude MEC via Evolutionary Multi-objective Deep Reinforcement Learning [52.64813150003228]
The low-altitude economy (LAE), driven by unmanned aerial vehicles (UAVs) and other aircraft, has revolutionized fields such as transportation, agriculture, and environmental monitoring.<n>In the upcoming six-generation (6G) era, UAV-assisted mobile edge computing (MEC) is particularly crucial in challenging environments such as mountainous or disaster-stricken areas.<n>The task offloading problem is one of the key issues in UAV-assisted MEC, primarily addressing the trade-off between minimizing the task delay and the energy consumption of the UAV.
arXiv Detail & Related papers (2025-01-11T02:32:42Z) - Cluster-Based Multi-Agent Task Scheduling for Space-Air-Ground Integrated Networks [60.085771314013044]
Low-altitude economy holds significant potential for development in areas such as communication and sensing.<n>We propose a Clustering-based Multi-agent Deep Deterministic Policy Gradient (CMADDPG) algorithm to address the multi-UAV cooperative task scheduling challenges in SAGIN.
arXiv Detail & Related papers (2024-12-14T06:17:33Z) - Edge computing service deployment and task offloading based on
multi-task high-dimensional multi-objective optimization [5.64850919046892]
This study investigates service deployment and task offloading challenges in a multi-user environment.
To ensure stable service provisioning, beyond considering latency, energy consumption, and cost, network reliability is also incorporated.
To promote equitable usage of edge servers, load balancing is introduced as a fourth task offloading objective.
arXiv Detail & Related papers (2023-12-07T07:30:47Z) - Multi-Objective Optimization for UAV Swarm-Assisted IoT with Virtual
Antenna Arrays [55.736718475856726]
Unmanned aerial vehicle (UAV) network is a promising technology for assisting Internet-of-Things (IoT)
Existing UAV-assisted data harvesting and dissemination schemes require UAVs to frequently fly between the IoTs and access points.
We introduce collaborative beamforming into IoTs and UAVs simultaneously to achieve energy and time-efficient data harvesting and dissemination.
arXiv Detail & Related papers (2023-08-03T02:49:50Z) - AI-based Radio and Computing Resource Allocation and Path Planning in
NOMA NTNs: AoI Minimization under CSI Uncertainty [23.29963717212139]
We develop a hierarchical aerial computing framework composed of high altitude platform (HAP) and unmanned aerial vehicles (UAVs)
It is shown that task scheduling significantly reduces the average AoI.
It is shown that power allocation has a marginal effect on the average AoI compared to using full transmission power for all users.
arXiv Detail & Related papers (2023-05-01T11:52:15Z) - Collaborative Intelligent Reflecting Surface Networks with Multi-Agent
Reinforcement Learning [63.83425382922157]
Intelligent reflecting surface (IRS) is envisioned to be widely applied in future wireless networks.
In this paper, we investigate a multi-user communication system assisted by cooperative IRS devices with the capability of energy harvesting.
arXiv Detail & Related papers (2022-03-26T20:37:14Z) - Reinforcement Learning Framework for Server Placement and Workload
Allocation in Multi-Access Edge Computing [9.598394554018164]
This paper addresses the problem of minimizing both, the network delay, and the number of edge servers to provide a MEC design with minimum cost.
We propose a novel RL framework with an efficient representation and modeling of the state space, action space and the penalty function in the design of the underlying Markov Decision Process (MDP) for solving our problem.
arXiv Detail & Related papers (2022-02-21T03:04:50Z) - Optimization for Master-UAV-powered Auxiliary-Aerial-IRS-assisted IoT
Networks: An Option-based Multi-agent Hierarchical Deep Reinforcement
Learning Approach [56.84948632954274]
This paper investigates a master unmanned aerial vehicle (MUAV)-powered Internet of Things (IoT) network.
We propose using a rechargeable auxiliary UAV (AUAV) equipped with an intelligent reflecting surface (IRS) to enhance the communication signals from the MUAV.
Under the proposed model, we investigate the optimal collaboration strategy of these energy-limited UAVs to maximize the accumulated throughput of the IoT network.
arXiv Detail & Related papers (2021-12-20T15:45:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.