Gradient Deconfliction via Orthogonal Projections onto Subspaces For Multi-task Learning
- URL: http://arxiv.org/abs/2503.03438v1
- Date: Wed, 05 Mar 2025 12:13:08 GMT
- Title: Gradient Deconfliction via Orthogonal Projections onto Subspaces For Multi-task Learning
- Authors: Shijie Zhu, Hui Zhao, Tianshu Wu, Pengjie Wang, Hongbo Deng, Jian Xu, Bo Zheng,
- Abstract summary: We propose a Gradient Deconfliction via Orthogonal Projections onto Subspaces (GradOPS) spanned by other task-specific gradients.<n>Our method can effectively find multiple state-of-the-art solutions with different trade-off strategies among the tasks on multiple datasets.
- Score: 25.003030920185026
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Although multi-task learning (MTL) has been a preferred approach and successfully applied in many real-world scenarios, MTL models are not guaranteed to outperform single-task models on all tasks mainly due to the negative effects of conflicting gradients among the tasks. In this paper, we fully examine the influence of conflicting gradients and further emphasize the importance and advantages of achieving non-conflicting gradients which allows simple but effective trade-off strategies among the tasks with stable performance. Based on our findings, we propose the Gradient Deconfliction via Orthogonal Projections onto Subspaces (GradOPS) spanned by other task-specific gradients. Our method not only solves all conflicts among the tasks, but can also effectively search for diverse solutions towards different trade-off preferences among the tasks. Theoretical analysis on convergence is provided, and performance of our algorithm is fully testified on multiple benchmarks in various domains. Results demonstrate that our method can effectively find multiple state-of-the-art solutions with different trade-off strategies among the tasks on multiple datasets.
Related papers
- Modeling Multi-Task Model Merging as Adaptive Projective Gradient Descent [74.02034188307857]
Merging multiple expert models offers a promising approach for performing multi-task learning without accessing their original data.
We find existing methods inevitably discard task-specific information that, while causing conflicts, is crucial for performance.
Our approach consistently outperforms previous methods, achieving state-of-the-art results across diverse architectures and tasks in both vision and NLP domains.
arXiv Detail & Related papers (2025-01-02T12:45:21Z) - Task Weighting through Gradient Projection for Multitask Learning [5.5967570276373655]
In multitask learning, conflicts between task gradients are a frequent issue degrading a model's training performance.
In this work, we present a method to adapt the Gradient Projection algorithm PCGrad to simultaneously perform task prioritization.
Our approach differs from traditional task weighting performed by scaling task losses in that our weighting scheme applies only in cases where tasks are in conflict, but lets the training proceed unhindered otherwise.
arXiv Detail & Related papers (2024-09-03T11:17:44Z) - Fair Resource Allocation in Multi-Task Learning [12.776767874217663]
Multi-task learning (MTL) can leverage the shared knowledge across tasks, resulting in improved data efficiency and generalization performance.
A major challenge in MTL lies in the presence of conflicting gradients, which can hinder the fair optimization of some tasks.
Inspired by fair resource allocation in communication networks, we propose FairGrad, a novel MTL optimization method.
arXiv Detail & Related papers (2024-02-23T22:46:14Z) - Robust Analysis of Multi-Task Learning Efficiency: New Benchmarks on Light-Weighed Backbones and Effective Measurement of Multi-Task Learning Challenges by Feature Disentanglement [69.51496713076253]
In this paper, we focus on the aforementioned efficiency aspects of existing MTL methods.
We first carry out large-scale experiments of the methods with smaller backbones and on a the MetaGraspNet dataset as a new test ground.
We also propose Feature Disentanglement measure as a novel and efficient identifier of the challenges in MTL.
arXiv Detail & Related papers (2024-02-05T22:15:55Z) - On Task Performance and Model Calibration with Supervised and
Self-Ensembled In-Context Learning [71.44986275228747]
In-context learning (ICL) has become an efficient approach propelled by the recent advancements in large language models (LLMs)
However, both paradigms are prone to suffer from the critical problem of overconfidence (i.e., miscalibration)
arXiv Detail & Related papers (2023-12-21T11:55:10Z) - Equitable Multi-task Learning [18.65048321820911]
Multi-task learning (MTL) has achieved great success in various research domains, such as CV, NLP and IR.
We propose a novel multi-task optimization method, named EMTL, to achieve equitable MTL.
Our method stably outperforms state-of-the-art methods on the public benchmark datasets of two different research domains.
arXiv Detail & Related papers (2023-06-15T03:37:23Z) - Pareto Manifold Learning: Tackling multiple tasks via ensembles of
single-task models [50.33956216274694]
In Multi-Task Learning (MTL), tasks may compete and limit the performance achieved on each other, rather than guiding the optimization to a solution.
We propose textitPareto Manifold Learning, an ensembling method in weight space.
arXiv Detail & Related papers (2022-10-18T11:20:54Z) - Multi-Task Learning as a Bargaining Game [63.49888996291245]
In Multi-task learning (MTL), a joint model is trained to simultaneously make predictions for several tasks.
Since the gradients of these different tasks may conflict, training a joint model for MTL often yields lower performance than its corresponding single-task counterparts.
We propose viewing the gradients combination step as a bargaining game, where tasks negotiate to reach an agreement on a joint direction of parameter update.
arXiv Detail & Related papers (2022-02-02T13:21:53Z) - Conflict-Averse Gradient Descent for Multi-task Learning [56.379937772617]
A major challenge in optimizing a multi-task model is the conflicting gradients.
We introduce Conflict-Averse Gradient descent (CAGrad) which minimizes the average loss function.
CAGrad balances the objectives automatically and still provably converges to a minimum over the average loss.
arXiv Detail & Related papers (2021-10-26T22:03:51Z) - Semi-supervised Multi-task Learning for Semantics and Depth [88.77716991603252]
Multi-Task Learning (MTL) aims to enhance the model generalization by sharing representations between related tasks for better performance.
We propose the Semi-supervised Multi-Task Learning (MTL) method to leverage the available supervisory signals from different datasets.
We present a domain-aware discriminator structure with various alignment formulations to mitigate the domain discrepancy issue among datasets.
arXiv Detail & Related papers (2021-10-14T07:43:39Z) - Pareto Multi-Task Learning [53.90732663046125]
Multi-task learning is a powerful method for solving multiple correlated tasks simultaneously.
It is often impossible to find one single solution to optimize all the tasks, since different tasks might conflict with each other.
Recently, a novel method is proposed to find one single Pareto optimal solution with good trade-off among different tasks by casting multi-task learning as multiobjective optimization.
arXiv Detail & Related papers (2019-12-30T08:58:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.